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The dynamical analysis of large biological regulatory networks requires the development of
scalable methods for mathematical modeling. Following the approach initially introduced by
Thomas, we formalize the interactions between the components of a network in terms of discrete
variables, functions, and parameters. Model simulations result in directed graphs, called state
transition graphs. We are particularly interested in reachability properties and asymptotic
behaviors, which correspond to terminal strongly connected components (or "attractors") in the
state transition graph. A well-known problem is the exponential increase of the size of state
transition graphs with the number of network components, in particular when using the
biologically realistic asynchronous updating assumption. To address this problem, we have
developed several complementary methods enabling the analysis of the behavior of large and
complex logical models: (i) the definition of transition priority classes to simplify the dynamics;
(i1) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to
compact state transition graphs and directly generate compressed representations, emphasizing
relevant transient and asymptotic dynamical properties. The power of an approach combining
these different methods is demonstrated by applying them to a recent multilevel logical model for
the network controlling CD4+ T helper cell response to antigen presentation and to a dozen
cytokines. This model accounts for the differentiation of canonical Thl and Th2 lymphocytes, as
well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these
methods have been implemented into the software GINsim, which enables the definition, the
analysis, and the simulation of logical regulatory graphs. © 2013 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
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Dynamical modeling and analysis of large cellular regulatory networks

License. [http://dx.doi.org/10.1063/1.4809783]

The dynamical analysis of comprehensive biological regu-
latory networks requires the development of scalable
mathematical modeling methods. In this context, discrete
(Boolean or multilevel) logical modeling is increasingly
used to handle and analyze large molecular networks.'®
This article focuses on the presentation of several
approaches to cope with the inherent exponential growth
of the discrete state space as the size of the regulatory
networks considered increases.

. INTRODUCTION

To model biological regulatory networks, we rely on the
logical approach initially introduced by Thomas, where the
interactions between the components of a network are for-
malized in terms of discrete variables, functions, and
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parameters.'®*’® This modeling approach has proved effec-
tive in its application to a variety of regulatory and signaling
networks, from yeast cell cycle control'® to T lymphocyte
differentiation.”’

The logical modeling approach has been implemented
into the software GINsim, which enables the definition of
logical regulatory graphs and provides a number of original
functionalities. These include the construction of synchro-
nous or asynchronous state transition graphs (STGs) that
represent model dynamical behaviors, along with algorithms
enabling the determination of all logical stable states and the
analysis of the roles of regulatory circuits.”?® However,
when focusing on transient aspects of the dynamics or on the
reachability of the attractors from specific initial conditions,
we are facing the recurrent combinatorial explosion inherent
in these models: the size of the state space grows exponen-
tially with the number of regulatory components involved in
the model. This problem is particularly acute in the case of
asynchronous, non-deterministic updating mode, which is
usually more biologically realistic than the simpler, deter-
ministic synchronous updating mode.'”*” Here, we present

© Author(s) 2013
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an overview of three main complementary strategies to cope
with this combinatorial explosion.

The first strategy consists in reducing the model before
performing simulations or other kinds of analysis.?

The second strategy simplifies the state transition graphs
by forcing choices between alternative transitions; this can
be achieved by defining priority (a/synchronous) transition
classes, which are similar to time-scale based assumptions
often used to simplify the dynamical analysis of ordinary dif-
ferential equation (ODE) models.'*

The third, novel strategy consists in compressing the
state transition graph into a novel graph representation,
called hierarchical transition graph (HTG), which keeps
track of attractors and their basins of attraction, as well as of
transient oscillatory properties; here, we further propose an
algorithm for the construction of this hierarchical graph. We
also show that this method can be used in combination with
the two aforementioned approaches to get insights into the
dynamics of complex logical regulatory graphs.

In addition, model-checking approaches rely on sym-
bolic representations of the dynamics, exploring only the
necessary state space required for the verification of proper-
ties expressed as temporal logic formulas.

Section II introduces the basics of the multilevel logical
formalism and provides an overview of selected methods en-
abling the analysis of the dynamics of large logical regula-
tory networks.

The definition of hierarchical transition graphs is at the
core of Section III, referring to the relatively simple example
of the bacteriophage lambda core regulatory network.

Section IV takes advantage of a recent comprehensive
model of the regulatory network controlling T-helper cell
differentiation in response to antigen presentation and to a
dozen cytokines?’ to illustrate the power of the compression
of state transition graphs into hierarchical transition graphs,
as well as the insights gained into the corresponding logical
dynamical behavior.

Finally, Section V proposes some global conclusions
and discusses current challenges and further prospects.

Il. LOGICAL MODELING AND ANALYSIS
OF REGULATORY GRAPHS

This section introduces the basics of the logical formal-
ism and presents a short overview of existing methods that
enhance the dynamical analysis of logical models.

A. Logical regulatory graphs

A logical model is defined by an interaction graph where
the nodes denote regulatory components (genes, proteins, etc.)
and the arcs denote regulatory interactions. Moreover, a dis-
crete variable is associated with each component, accounting
for its level of activity (or expression). Logical functions
define the dynamical evolution of the model.

Definition 1. A Logical Regulatory Graph R = (G, K)
is a graph, where

* G={gi},_, , is the set of n regulatory components.
Each component g; is associated with a discrete variable
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s;in D; = {0,...,max;}. A state is thus defined as a vector
sesS= Hg,-EG D,

* K ={Ki};_, ., is the set of logical functions; K;: S —
D; defines for each state, the target level of g;.

The arcs are deduced from the functions in K, there is a
regulatory interaction from g; to g; iff there are two states s
and s', differing only by the value of g;, that lead to different
values of K;

ds,s' €S s, = s Vk # i, and 5; # 5}, 8.t. K;(s) # K;(s').

Figure 1 illustrates this definition with a logical regula-
tory graph for the bacteriophage lambda switch.

The dynamics of logical models are represented in the
form of state transition graphs as defined in Subsection III B.

B. State transition graphs

Definition 2. Given a logical regulatory graph
R = (G, K), its (full) STG, denoted by €= (S, T), is a
directed graph with:

* Sthe state space of R : S = llgec D),
o T:8%—{0,1} the transition function: there is an arc con-
necting a state s to its successor s' whenever T(s,s') =1.

The transition function is defined according to an updat-
ing policy, which indicates the components to be updated in
each transition. Here, for sake of brevity, we only consider the
asynchronous updating policy (Definition 3). All results could
be extended to other updating policies (including mixed (a)
synchronous priority classes as presented in Sec. II C 2).

Definition 3. Given a logical regulatory graph
R = (G, K), the transition function defined according to the
asynchronous updating policy specifies, for each state s, its
successor states (as many as the components called to update
ins):V(s,s) € S?,

1, szIg, S GS.[.K,‘(S) # Si,
|Ki(s) — sil

Kl'(S) — 8
0, otherwise.

sh=si+ and Ng; # gi,sj’- =

Logical functions
Kcr(s)=2 —Cro Vv CII
Kcro(s) =3 =CI:2 N ~Cro:3
Kcro(s) =2 -CI:2 N Cro:3
Kcri(s)=1 =~CI:2 N =-Cro:3 A N
Kn(s)=1 ~CI N —=Cro:2

FIG. 1. Logical regulatory graph of the bacteriophage lambda switch.>
Left: the interaction graph, with the four components CI, Cro, CII, and N.
Right: the logical functions, s denoting the vector (scr, Scro, Scir, Sn) of the
component levels. For legibility, we rewrite each rule in terms of logical var-
iables, e.g., CI denotes an interaction going out CI with a threshold 1, and it
is true whenever s¢; > 1, while CI : 2 denotes an interaction going out CI
with a threshold 2; it is true whenever s¢; > 2. Here, for each component,
we provide the rule(s) leading to a non-zero value of the logical function
(meaning that when none of these conditions is fulfilled, the value is 0). For
instance, the rule for K¢ (s) = 2 is satisfied for 30 states (those such that
Scro = 0 or s¢y = 1); for all other states, CI’s target value is 0. Note that val-
ues 1 of CI and Cro are always transient for this set of rules.
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Note that updates are performed stepwise and thus tran-
sitions connect neighbouring states (i.e., their Hamming dis-
tance is 1).

We are often interested in a sub-graph of the full STG,
which is generated considering a (set of) initial state(s).
Then, the property of interest relates to the attractors reach-
able from this (set of) initial condition(s). Figure 2(a)
displays the STG obtained for the phage lambda model,
starting from a state where all variables are set to zero.
Attractors, which denote asymptotical behaviors, are
defined in a STG as its terminal strongly connected compo-
nents (SCCs). Recall that strongly connected components
are defined as the maximal strongly connected subgraphs

(i.e., there is a path from each node to every other
node).>?
Given £=(S,T) a STG, we introduce further notation:

Scc is the set of the SCCs of &;

Vs,s' € S, s~»s means that there exists a path from s to s’
(we consider that a sequence of a unique state forms a
path of length 0, hence s~-5);

Vs € S, VC € Scc, s~~C means that there exists a path
from s to any state s’ € C;

& is the set of the trivial SCCs (i.e., reduced to a single
node) & = {{s} € Scc,s € S};

% is the set of the complex SCCs: € = {C € Scc,#C >
2} (or € = Scc\Y);

The sign * denotes terminal elements of Scc that will be
referred to as attractors: C* is terminal iff Vs € C*, Vs
€S, T(s,s') =1=s"€C* The non-terminal compo-
nents are transient. In addition, €* (resp. ") denotes the
set of the complex attractors (resp. the set of stable states).

Definition 4. Let A* be an attractor, we define Ba+ the
basin of attraction of A* : By~ = {s € S,s~A*}. We further
define B 4+, the strict basin of attraction of A*,

EA* = {S € By 5.t. VX" €

(" VI )\{A"}, s & By }.

Chaos 23, 025114 (2013)

Hence, A* can be reached from any state in B4 or in
B 4-; no other attractor can be reached from any state in By-.

C. Coping with large dynamics

Given a logical regulatory graph, the associated state
space has [[, . |Di| elements (ie., 26 in the case of
Boolean variables), meaning that its size grows exponen-
tially with the number of regulatory components. Most prop-
erties are thus NP-complete, but one can mitigate this
problem by lessening the size of the search space.

Here, we briefly review strategies to ease the analysis of
large dynamics. A first approach consists in reducing the
model, while ensuring the preservation of key properties.
Another strategy lessens the number of transitions of the
STG (hence simplifying the dynamics) assigning priorities to
updating calls, relying on biologically well-founded assump-
tions. Other methods enable the reduction of the size of a
STG, either by compacting it without losing any information,
by applying appropriate reductions, or by considering alter-
nate representations. Finally, we end this section with a short
discussion on model-checking applied to multilevel logical
models.

1. Model reduction

A first strategy to reduce the complexity of a model is to
reduce its size, by removing some components. This is often
done manually by the modeler, defining direct interactions
even when it is known that the regulatory effects involve in-
termediate components. Obviously, by lessening the number
of components, such reductions lead to smaller state spaces
and hence simplified dynamics.

We have proposed to automate such model reductions
and characterized their impact on the dynamics.”” Basically,
the reduction of a component amounts to attribute its regula-
tory role to its own regulators and to modify the logical func-
tion driving the behavior of its targets accordingly. The

B @
ca#z
@
C D
G - &D—
Cl," Cros CII_- ’ ‘ / ’
- D
o / \
Cl+
[0 |-— D = — ~ED

FIG. 2. Lambda phage model: different views of the dynamics. All the graphs, except that of panel (D), have been generated starting from the initial state (CI,
Cro, CII, N)=0000. (A) STG with the unique stable state indicated in a rectangular node; states sharing the same color belong to the same SCC. (B)
Corresponding graph of the SCCs (same coloring as in panel A). (C) Corresponding HTG; arc labels refer to transitions in the underlying STG (i.e., updates of
regulatory components). (D) HTG obtained using 1000 as initial state, which belongs to component i#7 in panel C; note the absence of a path from this state to
the component i#3 (cf. remark 1). In the SCC and HTG graphs, node labels indicate the nature of the components: i irreversible; ¢t complex transient SCC; ss
stable state; ca complex attractor; followed by the numbers of states in the component. For components reduced to a single state, the value of this state is

displayed.
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reduction of a self-regulated component is forbidden for it
would not fit this rationale and would change the dynamical
properties of the model. Indeed, we could prove that, pro-
vided this restriction on self-regulated components, the sta-
ble states and elementary terminal cycles of a reduced model
exactly correspond to those of the original model. Moreover,
the reduced model displays at least as many complex attrac-
tors, some corresponding to complex attractors of the origi-
nal model, while others correspond to original transient
oscillatory behaviors. In short, the main property of the pro-
posed reduction is that it may suppress some transitions or
paths, but never generates new ones.

Considering signaling networks including non-regulated
input components, which usually account for external stim-
uli, Saadatpour er al. recently proposed to reduce input
cascades that stabilize under constant input conditions.*?
This reduction has obviously no impact on the number and
nature of the attractors, although it might change their reach-
ability. Similarly, one can ignore (pseudo-)output compo-
nents that have no outgoing interactions or that only regulate
(pseudo-)output components.28 Indeed, such output cascades
have no impact, neither on the number and nature of the
attractors, nor on their reachability.

2. Priority classes

Asynchronous state transitions graphs can be sometimes
simplified by reducing the number of transitions, using rela-
tively simple temporal assumptions. Indeed, in all states, the
asynchronous scheme defines as many transitions as the
number of components called to update, thus potentially gen-
erating spurious trajectories. A number of these can be
ignored by defining priority classes ranking updating calls.'*
When two calls with distinct priority ranks are enabled in a
state, the one with the lowest rank is discarded. Updatings
belonging to the same class can be treated synchronously or
asynchronously. In GINsim, it is thus possible to partition
component updatings into distinct classes that implement
such a priority scheme.”?° Needless to say, priority classes
should be biologically well-founded to ensure that discarded
trajectories are indeed irrelevant.

3. Lessening the size of the state transition graph

Several studies have addressed the problem of the com-
binatorial explosion of the state space of asynchronous tran-
sition systems.

Given a STG, an informative view of the dynamics is
provided by the graph of its SCCs, where each node accounts
for one SCC (possibly keeping the information of the states
it encompasses). The resulting graph is a directed acyclic
graph, which is often much smaller than the original STG,
yet keeping all the reachability information (see Figures 2(a)
and 2(b)). Tarjan defined an efficient algorithm to compute
the SCCs of a directed graph (linear in the number of nodes
and arcs).>® Tournier and Chaves™ have already applied
SCC decomposition to STGs. However, SCC compaction
remains limited in the case of networks with long or numer-
ous regulatory cascades, which give rise to multiple linear
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(although potentially branching) pathways in the resulting
STGs.

Another approach that keeps the whole STG structure
applies to models that encompass a significant number of
input components. These account for external stimuli (e.g.,
environmental cues) and the corresponding variables are
generally maintained constant. In this case, the STGs corre-
sponding to different combinations of input values are dis-
connected. Input components may also be considered as
“uncontrolled” variables, which are allowed to freely vary at
each time step. A natural reduction consists in projecting the
state space on the set of internal components and labelling
each transition with the values of the input components that
enable that transition (for more details, see Ref. 24).

Other strategies, mainly developed by the formal verifi-
cation community, reduce the state space yet ensuring that
truth values of (linear) temporal logic formulas are pre-
served. This is the case of partial-order reduction methods
that basically consist in identifying, for each state, a subset
of transitions to explore (hence not exploring all the succes-
sors). Alternative (rather similar) definitions of these sets
have been proposed, called stubborn, ample, or persistent
sets. !>

Relying on the Petri net representation of logical regula-
tory graphs® and using Petri net tools (e.g., TINA®), we have
recently applied such a partial-order reduction to check
reachability properties on a large logical model (encompass-
ing 72 regulatory components). For this specific model, due
to the structure of its dynamics, partial-order reduction
proved to be poorly effective. However, there is certainly
room for improvements of these methods,16 and further work
might identify a class of logical graphs more amenable to
this kind of reductions.

4. Model-checking

During the recent years, formal verification techniques
based on model-checking have been successfully applied to
the analysis of molecular network models.*”** This
approach is directly applicable to the verification of logical
regulatory graphs, which constitute a class of finite state sys-
tems. In general, experimentally observed biological behav-
iors can be expressed in terms of temporal logic statements,
and model-checking algorithms used to automatically verify
if a model satisfies these statements.

When using explicit representations of states and transi-
tions, model-checking may use partial-order reduction to
lessen the size of the search space. However, symbolic
model-checking relies on implicit representations, scaling
better for large models. The choice of the temporal logic
depends on the type of property to be checked.'? Here, we
are mainly interested in attractor reachability from a (set of)
initial condition(s) as well as in the conditions enabling such
trajectories. This supposes a previous characterization of the
attractors, among which the stable states can be efficiently
identified beforehand.”

GINsim includes an export converting logical models
into NuSMV symbolic descriptions.”* NuSMV is a symbolic
model-checking tool capable of verifying finite state
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machines against a set of property requirements, expressed as
temporal logic formulas.'' This export supports the definition
of priority classes and takes advantage of the reduction over
input components evoked in Sec. IIC 3, these being specified
either as constant or as freely varying variables. Noteworthy,
in the case of varying inputs, the notion of stable states needs
to be extended: a state may be stable for given values of input
components, and not for others.”® For models with input com-
ponents, it is thus possible to analyze switches between cellu-
lar types (i.e., stable states) and verify the corresponding input
component variations (see Sec. IV and Figure 6).

lll. HIERARCHICAL TRANSITION GRAPH

This section deals with the definition and properties of a
novel, compact hierarchical graph, where a set of states is
shrunken into a single node, whenever it forms a Strongly
Connected Component (SCC), or a (set of) linear chain(s)
leading to the same set of SCCs and attractors. Compared to
the SCC graph mentioned above, this graph generally corre-
sponds to a further reduction of the State Transition Graph
(STG). Furthermore, the resulting grouping of states greatly
eases the interpretation of the structure of the dynamics in
terms of basins of attraction.

A. Definitions

Let us first define the application ¢ that associates to
each SCC C, the set of SCCs, complex or terminal, that are
reachable from C, including C itself if it is complex or
terminal

oX)={Ce $US st.X=CorVsecX,s~C}.

Furthermore, we define Z C 25, the set of irreversible
transient components in which trivial non-terminal SCCs
(elements of .\ ") that have the same o-image are grouped
together

I={I€2st.Vsel {s} € $\¢* and
s, €el=a({s})=a({s})}.

Definition 5. Given a STG E=(S,T), we denote
H=(CUZUS",T) its corresponding Hierarchical
Transition Graph (HTG), where T : (C UZ US")* — {0,1}
defines the arcs of H

T(C,C)=1<=Fs€C, I e€Cst.T(s,s)=1.

Each complex SCC of the STG is contracted to a single
node in the HTG. Similarly, a single HTG node accounts for all
trivial SCCs sharing the same o¢-image. Figure 2 provides an
illustration of the HTG construction for the lambda phage model.

B. Properties

For two components C, C' € ¥ UZ U 9", the notation
C ~> (' indicates the existence of a path from C to C’ in the
HTG. The following property relates paths in the STG to
paths in the corresponding HTG.

Chaos 23, 025114 (2013)

Property 1.

1. A path connecting any HTG component to a non-
irreversible component implies the existence of a path in
the corresponding STG

YCe¥ UL C €%,

CLC = sws VWse Cc,vs'ecC.

2. A path between two states in the STG implies the existence
of a path between the HTG components they belong to

H .
Vs,s' € S,sv5 = C~C', with seC,s €C.

Proof.

1. Let CAC', with C€% UT and C' € €U .S*. Then,
C' €0(C):Vs € C, s~C" and the first item of Property 1
is proved by definition.

2. Let s, s € Ss.t.s~s', and denote C and C’ the compo-
nents of the HTG, such that s € C and s’ € (.

 If C = (', the statement is obviously true.

e IfC #£C, let (s=s1,8,...,5 = §') be the path from s
to s’ in the STG: Vi=1,...,k—1,s5€S and
T(siysiv1) = 1; if Vi=1,...,k, C; denotes the compo-
nent of Scc such that s; € C;, we have 7 (C;,Ciy1) =1
or C; = Ciy1. Hence, following the path s~s', we
obtain that C ~ C’.

Remark 1. Property I does not ensure equivalence of
path existence in STG and related HTG. Indeed, in item 1,
we have the restriction that C'¢ I: when C X C’', with
C' €I, given s € C, we cannot ensure the existence of a
path in the STG from s to a state s' € C'. y

In Figure 2, we have such a situation, where C ~C’,
with C' € T and 3s € C s.t., there is no path in the STG from
s to any state in C'. Indeed, considering Figure 2, panel C, the
irreversible component i#7 contains the state 1000 (see panel
B), and the arc from i#7 to i#3 indicates that there exists a
state s € i#7 and a state s' € i#3 such that s~s' (e.g., T(1011,
2011)=1, in panel A or B). However, there is no path from
state 1000 to any state of i#3 as illustrated in panel D.

HAnother typical  situation for which we have
C~C', C' €I, and no path in the STG from s € C to
s' € C', may arise when a hierarchical (irreversible) compo-
nent contains disconnected states.

We propose an algorithm to generate HTGs of logical
regulatory graphs, given a (set of) initial condition(s).
Described in the supplementary file,*’ this algorithm is based
on Tarjan’s method** and compacts a STG on-the-fly.

C. Basins of attraction

A classical way to study the dynamics is to focus on
attractors and their basins of attraction (cf. Definition 4).
When using the synchronous dynamics, their computation is
facilitated by the fact that all states have at most one succes-
sor (for more details, see Ref. 42). But in the case of concur-
rent behavior, it is computationally much more costly (see
Refs. 1, 39, and 41 for the fully asynchronous case).
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By construction, the HTG nodes group together states of
the STG and thus allow to easily recover the basins of attrac-
tions. Indeed, given A* an attractor in the STG, and C €
% UZ U.%" anode of the HTG, the states of C are in By-,
the basin of attraction of A*, iff A* € ¢(C). The states of C
are in By., the strict basin of attraction of A*, iff
a(C)N (¢*U9") = {A*}. Hence, for all attractors, it is
much easier to identify their basins of attraction on the basis
of the HTG.

Irreversible decisions are taken at the intersections of
the basins of attraction. Given two consecutive nodes X; and
X, in the HTG (7 (X;,X2) = 1), crucial decisions can be
associated with the arc linking these nodes if ¢(X;) N (" U
I # a(X2) N (€7 UI7) (i.e., the system enters a more re-
stricted basin of attraction). Consider two attractors A} and
A3 such that AT € o(X1) N a(X2), A5 € 0(X;) and A3/o(X2).
We say that the transition (X1,X;) belongs to the boundary
of BA;: removing all such transitions would isolate BA; from
the rest of the HTG. In Figure 2(c), transitions (ct#31, ct#2)
and (ct#31, ca#2) constitute the boundary of By 2000-

IV. APPLICATION TO Th CELL DIFFERENTIATION

T-helper lymphocytes play a key role in the regulation
of the immune response in vertebrate. Various T-helper sub-
types (Thl, Th2, Th17, Treg) have been identified over the
years, characterized by the expression of specific transcrip-
tion factors and cytokines, which have a critical influence on
the selection of specific immune responses, driving pro-
inflammatory or allergic responses, promoting alternative
antibody classes, or yet preventing (auto)immunity by inhibi-
ting the activation and proliferation of other cells.

Several modeling studies have been proposed to shed
light on the regulatory network controlling T-helper cell acti-
vation and differentiation (see, e.g., Refs. 20, 21, 23, 33, 40
and references therein).

To gain insight into the heterogeneity and the plasticity
of late T-helper lineages, we have recently built an integrated
logical model of the core regulatory network and main sig-
naling pathways controlling Th cell differentiation®’ (Figure
3). Encompassing 65 components (including 13 inputs,
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corresponding to antigen presentation and a dozen different
cytokines), this multilevel logical model proved to be too
complex to be straightforwardly simulated. This situation
motivated the development of the reduction method men-
tioned above.?””?® In the case of our T-helper model, we
were led to hide 31 components (shown in grey in Figure 3)
and thus obtained a more compact model encompassing 34
nodes (including the same 13 inputs).

Using the resulting reduced T-helper model, we have
performed a series of simulations to assess the effects of het-
erogeneous environments on Th cell differentiation. This led
us to identify stable states corresponding to canonical Thl,
Th2, Th17, and Treg subtypes, but also to hybrid cell types
co-expressing combinations of Thl, Th2, Treg, and Thl7
markers in an environment-dependent fashion.

Here, we apply the HTG construction to this reduced
model in order to demonstrate how the dynamics can be
compressed in a meaningful way, emphasizing the structure
of the underlying STG, as well as crucial decision points
along dynamical pathways. In this respect, we have selected
a limited number of simulations leading to STGs of increas-
ing complexity.

Figure 4 displays the HTGs obtained when simulating a
naive T-helper cell stimulated by an antigen presenting cells
in the presence of IL2 alone, or in the presence of pro-Thl,
Th2, Treg, or Th17 cytokines. In all cases but the last one,
we obtain a unique stable state corresponding to the expected
cellular state (activated ThO, Th1, Th2, or Treg). In each of
these HTGs, all other states reachable from the initial condi-
tions are grouped together into a single irreversible transient
component, encompassing between 25 and 255 states. The
label associated with each arc denotes the ultimate elemen-
tary transitions going out the HTG node. In contrast, in pro-
Th17 conditions, the system can reach two different stable
states expressing Th17 transcription factor RORGT, IL10,
IL21, and IL23, one expressing also FOXP3, the other
expressing IL2. From the arc labels, it follows that the selec-
tion between these two stable states depends on the concur-
rent activation of RORGT and FOXP3.

Figure 5 (top) displays the HTG obtained when simulat-
ing a naive T-helper cell stimulated in mixed pro-Th2/pro-

Pl ]| = ==
@ |—* (<> @D @D @D | @D | ] (@D [ FIG. 3.Th differentiation regulatory
‘ I graph. The top nodes correspond to
inputs (APC and external input cyto-
l H kines), while nodes placed at the bottom
@D EfEppm @@ [sms ] s correspond to key transcription factors.
] J . - -
| | = | : I Nodes .con§1dered for reduction are
TITTITIn T T T T I I emphasized in grey. Green arrows denote
NG iL21 | RCORRGD 4 > 17 ) activations, red blunt arcs denote inhibi-
1 T ﬂ | tions while the blue arc from NFKB to
il IL17 denotes a dual interaction (see Ref.
N 27 for details).
0 o all
T
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123+

55-1001000000000210100000000100020100 $5-1011000000000211000000100110020100 | | $5-1001110000000210011110010101021100

Pro Th17 (TGFB, IL6)

#91
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"
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$s5-1001000000001210000001001100020100 | $5-1001010000001210101110000101020110 | | $5-1001010000001210001111001101020110

FIG. 4. HTG representation of asynchronous simulations of naive Th cells in simple polarizing environments. These HTGs correspond to the simulation of ThO
cells in the presence of APC signalling + IL2 alone, with INFG (pro Thl), or with IL4 + IL6 (pro Th2), or with TGFB (pro Treg), or with TGFB and IL6
(pro Th17), from top to bottom and left to right. All other nodes are set to zero at the initial state. In the notation of the logical stable states (prefixed by "ss-"), the
node order considered starts with APC, followed by the external input cytokines IFNB, INFG, IL2, IL4, IL6, IL10, IL12, IL15, IL21, IL23, IL27, TGFB, followed
by the receptor components IL2R and IL2RA, and then by the cytokines produced by the Th cell considered INFG, IL2, IL4, IL10, IL21, IL23, TGFB, then the
transcription and signal transduction factors TBET, GATA3, FOXP3, NFAT, STAT1, STAT3, STAT4, STATS, STATG6, followed by the proliferation node, fol-

lowed by RORGT and IL17. Arc labels indicate transitions (regulatory component updates) driving the system out of an HTG node toward another one.

Th17 environment, i.e., in the presence of 1L4, IL6, TGFB,
and in the absence of IL2. The resulting HTG merely com-
prises 13 nodes, to be contrasted with the 1146 states of the
corresponding STG. Furthermore, the HTG structure empha-
sizes the progressive commitment of cells when following
paths from the root to the leaves (stable states). The states
encompassed by other nodes belong to two or more basins of
attraction. Note that the system can reach four stable states,
more precisely two pairs of activated versus anergic Th2
RORGT+ subtypes. Within each of these pairs, the stable

IL2-
STATS+

IL2R-
IL2RA+
GATA3+

FOXP3+

states differ by the expression level of FOXP3. The labels
associated with the arcs clearly emphasize the transitions
implementing differentiation decisions. As illustrated in
Figure 5 (bottom), the use of priorities significantly
decreases the size of the dynamics; selecting updates of
ILR2, NFAT, and any of the STAT factors against other
component updates led to an HTG of 5 nodes (encompassing
31 states) instead of 13 nodes (encompassing 1146 states),
where the two anergic cellular types are the only reachable
stable states.

$5-1000110000001010011110010101021110

$5-1000110000001010001111011101021110

Activated GATA3+ RORGT+
$5-1000110000001010000000010101011010 | IL4+ IL10+ IL21+ IL23+

Activated GATA3+ RORGT+ FOXP3+

Anergic GATA3+ RORGT+ |

IL10+ IL21+ IL23+ TGFB+

55-10001100000010 11101011010

IL2RA+
GATA3+

Anergic GATA3+ RORGT+ FOXP3+

IL2RA+
GATA3+
RORGT+

| $5-1000110000001010000000010101011010

$s-1000110000001010000000011101011010 |

Anergic GATA3+ RORGT+

Anergic GATA3+ RORGT+ FOXP3+

FIG. 5. Compressed representation (HTG) of the asynchronous simulation of ThO in the presence of APC signaling + IL4 + IL6 + TGFB (combination of pro
Th2 and Th17 cytokines, in the absence of IL2). Four stable states can be reached: two pairs of activated versus anergic Th2 RORGT+- cells, differing by the
expression of FOXP3. The bottom part shows the HTG obtained for the same initial conditions but using two asynchronous priority classes. In this configura-
tion, transitions involving IL2R, NFAT, or any of the STAT factor are selected against those involving any other component. In contrast with the results
obtained without prioritization, only two stable states can be reached, both corresponding to anergic Th2 RORGT+- cells, which differ by the expression of
FOXP3. The labels associated with the arcs emphasize the crucial transitions underlying the choice of one or the other differentiation state.
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A thorough discussion of the biological significance of
these observations would go beyond the scope of this article.
However, these examples demonstrate the compression
and clarification of asynchronous simulations that can be
achieved using the HTG representation.

Finally, Figure 6 displays the reachability analysis
between cellular types through the use of model-checking.
For this, we considered the environmental conditions defined
by specific valuations of the 13 input components (see
Figure 5 of the original study, i.e., in Ref. 27) and the stable
expression patterns (see Figure 6 in Ref. 27). These stable
states correspond to cellular subtypes, which are stable under
specific environmental conditions. So, for each input combi-
nation, we verify the existence of a direct path between each
possible pair of cellular types. More precisely, we check
whether there is a fixed valuation of inputs such that there is
a direct path between two cellular subtypes, C1 and C2
(without going through other cellular subtypes) and C2 being
stable. Using this approach, we could reproduce the results
obtained at the cost of extensive simulations in the original
study (Figure 7 in Ref. 27). Three main groups are defined
over the Th cell subtypes (ThO, Thl, and Th2, see Figure 8
in Ref. 27). We could also verify that Th1 and Th2 subtypes
can never switch back to a ThO one, even when inputs are
allowed to vary freely. However, in such case, switches
between all cellular subtypes are possible within each group.

V. CONCLUSION AND PROSPECTS

HTGs emphasize relevant transient and asymptotic dy-
namical properties. We have defined a novel algorithm ena-
bling the compaction of state transition graphs and the
generation of HTGs on-the-fly. This approach has been

noStml

noStml

noStml

" - N
¥ proThl-a proTh2 X
Thl Th2
subtypes subtypes

FIG. 6. Model-checking reachability analysis between cellular types under
fixed input conditions using NuSMV."" Nodes represent cellular subtypes
(see Figure 6 in Ref. 27), whereas arrows represent the existence of a direct
path between two cellular types under a specific fixed environmental condi-
tion (see Figure 5 in Ref. 27). For simplicity, reachability analysis has been
truncated to the ThO subtypes, discarding the Th1 and Th2 subtypes.
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implemented into a development version of the software
GINsim, available as a pre-release.30

We have applied this approach to a comprehensive
model for T-helper cell differentiation. Although this model
still needs to be further refined and tested, the analysis pre-
sented here clearly demonstrates the assets of the HTG repre-
sentation, which leads to significant graph compression and
clearly emphasizes the organization of the state space into
attractors and basins of attraction.

Interestingly, applying our algorithm for HTG construc-
tion onto a HTG produces a further compacted graph-based
representation of the dynamics, where the nodes correspond
to basins of attraction.

Should a given dynamics be too large and complex to be
effectively compacted using the HTG representation, we can
rely on complementary methods presented in this manu-
script. These methods aim at reducing the size of the search
space, including the model reduction method that preserves
key dynamical properties and the definition of transition pri-
ority classes, relying on biologically well-founded assump-
tions. Moreover, we have presented model-checking
techniques to analyse reachability properties. Used jointly,
these methods enable the dynamical analysis of logical mod-
els of unprecedented sizes.

It is worth noting that the HTG structure could be con-
sidered in the context of other formal approaches relying on
state transition graphs, including Petri nets (see, e.g., Ref. 8
and references therein) and piecewise-linear differential
equation (PLDE) models.>'” Model-checking techniques
also apply to these models, once their dynamics can be repre-
sented by Kripke structures.'? Our model reduction could be
applied to PLDE models, but its impact on the dynamics still
needs to be clarified.

HTG construction could be optimized and improved,
e.g., using parallel algorithms. Although depth-first search
algorithms are known to be difficult to parallelize,' different
methods have been proposed to tackle this problem.”

Further analysis relying on HTG structures should allow
the assessment of finer properties. For instance, some well-
established rules (Thomas’ rules36) assert that differentiation
(resp. homeostasis) phenomena lean on the action of a positive
(resp. negative) circuit in the regulatory graphs. In practice, cir-
cuit functionality analysis often points to combinations of inter-
twined circuits, which are difficult to analyze. HTGs appear
particularly well suited to the dynamical analysis of complex
networks endowed with differentiation properties (i.e., present-
ing multiple alternative stable states, which can be all reached
from given initial conditions), as they capture the general orga-
nization of the corresponding STGs. Hence, based on the anal-
ysis of HTG structures, we should be able to identify the
circuits at the core of cell commitment and thereby focus on
the genes responsible for irreversible decisions.

An alternative strategy to analyze large regulatory
networks takes advantage of their modularity. Recently, we
have defined a compositional framework that relies on pro-
cess algebra to incrementally compose, abstract, and mini-
mize (using the safety equivalence) logical regulatory
modules, enabling impressive reductions of the dynamics.*
However, as proper methods to decompose large networks
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into functional modules are still lacking, we have focussed
on regulatory networks that encompass several identical
modules connected by inter-cellular signaling. In this
respect, one could take advantage of HTG structures to come
up with relevant model decomposition.
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