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The dynamical analysis of large biological regulatory networks requires the development of

scalable methods for mathematical modeling. Following the approach initially introduced by

Thomas, we formalize the interactions between the components of a network in terms of discrete

variables, functions, and parameters. Model simulations result in directed graphs, called state

transition graphs. We are particularly interested in reachability properties and asymptotic

behaviors, which correspond to terminal strongly connected components (or "attractors") in the

state transition graph. A well-known problem is the exponential increase of the size of state

transition graphs with the number of network components, in particular when using the

biologically realistic asynchronous updating assumption. To address this problem, we have

developed several complementary methods enabling the analysis of the behavior of large and

complex logical models: (i) the definition of transition priority classes to simplify the dynamics;

(ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to

compact state transition graphs and directly generate compressed representations, emphasizing

relevant transient and asymptotic dynamical properties. The power of an approach combining

these different methods is demonstrated by applying them to a recent multilevel logical model for

the network controlling CD4þ T helper cell response to antigen presentation and to a dozen

cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as

well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these

methods have been implemented into the software GINsim, which enables the definition, the

analysis, and the simulation of logical regulatory graphs. VC 2013 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4809783]

The dynamical analysis of comprehensive biological regu-

latory networks requires the development of scalable

mathematical modeling methods. In this context, discrete

(Boolean or multilevel) logical modeling is increasingly

used to handle and analyze large molecular networks.18

This article focuses on the presentation of several

approaches to cope with the inherent exponential growth

of the discrete state space as the size of the regulatory

networks considered increases.

I. INTRODUCTION

To model biological regulatory networks, we rely on the

logical approach initially introduced by Thomas, where the

interactions between the components of a network are for-

malized in terms of discrete variables, functions, and

parameters.10,37,38 This modeling approach has proved effec-

tive in its application to a variety of regulatory and signaling

networks, from yeast cell cycle control15 to T lymphocyte

differentiation.27

The logical modeling approach has been implemented

into the software GINsim, which enables the definition of

logical regulatory graphs and provides a number of original

functionalities. These include the construction of synchro-

nous or asynchronous state transition graphs (STGs) that

represent model dynamical behaviors, along with algorithms

enabling the determination of all logical stable states and the

analysis of the roles of regulatory circuits.9,26 However,

when focusing on transient aspects of the dynamics or on the

reachability of the attractors from specific initial conditions,

we are facing the recurrent combinatorial explosion inherent

in these models: the size of the state space grows exponen-

tially with the number of regulatory components involved in

the model. This problem is particularly acute in the case of

asynchronous, non-deterministic updating mode, which is

usually more biologically realistic than the simpler, deter-

ministic synchronous updating mode.17,37 Here, we present
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an overview of three main complementary strategies to cope

with this combinatorial explosion.

The first strategy consists in reducing the model before

performing simulations or other kinds of analysis.29

The second strategy simplifies the state transition graphs

by forcing choices between alternative transitions; this can

be achieved by defining priority (a/synchronous) transition

classes, which are similar to time-scale based assumptions

often used to simplify the dynamical analysis of ordinary dif-

ferential equation (ODE) models.14

The third, novel strategy consists in compressing the

state transition graph into a novel graph representation,

called hierarchical transition graph (HTG), which keeps

track of attractors and their basins of attraction, as well as of

transient oscillatory properties; here, we further propose an

algorithm for the construction of this hierarchical graph. We

also show that this method can be used in combination with

the two aforementioned approaches to get insights into the

dynamics of complex logical regulatory graphs.

In addition, model-checking approaches rely on sym-

bolic representations of the dynamics, exploring only the

necessary state space required for the verification of proper-

ties expressed as temporal logic formulas.

Section II introduces the basics of the multilevel logical

formalism and provides an overview of selected methods en-

abling the analysis of the dynamics of large logical regula-

tory networks.

The definition of hierarchical transition graphs is at the

core of Section III, referring to the relatively simple example

of the bacteriophage lambda core regulatory network.

Section IV takes advantage of a recent comprehensive

model of the regulatory network controlling T-helper cell

differentiation in response to antigen presentation and to a

dozen cytokines27 to illustrate the power of the compression

of state transition graphs into hierarchical transition graphs,

as well as the insights gained into the corresponding logical

dynamical behavior.

Finally, Section V proposes some global conclusions

and discusses current challenges and further prospects.

II. LOGICAL MODELING AND ANALYSIS
OF REGULATORY GRAPHS

This section introduces the basics of the logical formal-

ism and presents a short overview of existing methods that

enhance the dynamical analysis of logical models.

A. Logical regulatory graphs

A logical model is defined by an interaction graph where

the nodes denote regulatory components (genes, proteins, etc.)

and the arcs denote regulatory interactions. Moreover, a dis-

crete variable is associated with each component, accounting

for its level of activity (or expression). Logical functions

define the dynamical evolution of the model.

Definition 1. A Logical Regulatory Graph R ¼ ðG; KÞ
is a graph, where

• G ¼ fgigi¼1;…;n is the set of n regulatory components.
Each component gi is associated with a discrete variable

si in Di ¼ f0;…;maxig. A state is thus defined as a vector
s 2 S ¼ Pgj2G Dj.

• K ¼ fKigi¼1;…;n is the set of logical functions; Ki : S!
Di defines for each state, the target level of gi.

The arcs are deduced from the functions in K; there is a
regulatory interaction from gi to gj iff there are two states s
and s0, differing only by the value of gi, that lead to different
values of Ki

9s; s0 2 S s0k ¼ sk 8k 6¼ i; and si 6¼ s0i; s:t:KjðsÞ 6¼ Kjðs0Þ:

Figure 1 illustrates this definition with a logical regula-

tory graph for the bacteriophage lambda switch.

The dynamics of logical models are represented in the

form of state transition graphs as defined in Subsection III B.

B. State transition graphs

Definition 2. Given a logical regulatory graph
R ¼ ðG; KÞ, its (full) STG, denoted by E ¼ ðS; TÞ, is a
directed graph with:

• S the state space ofR : S ¼ Pgj2G Dj,
• T : S2!f0;1g the transition function: there is an arc con-

necting a state s to its successor s0 whenever Tðs;s0Þ ¼ 1.

The transition function is defined according to an updat-

ing policy, which indicates the components to be updated in

each transition. Here, for sake of brevity, we only consider the

asynchronous updating policy (Definition 3). All results could

be extended to other updating policies (including mixed (a)

synchronous priority classes as presented in Sec. II C 2).

Definition 3. Given a logical regulatory graph
R ¼ ðG; KÞ, the transition function defined according to the
asynchronous updating policy specifies, for each state s, its
successor states (as many as the components called to update
in s): 8ðs; s0Þ 2 S2,

Tðs; s0Þ ¼
1; if 9gi 2 G s:t:KiðsÞ 6¼ si;

s0i ¼ si þ
jKiðsÞ � sij
KiðsÞ � si

and 8gj 6¼ gi; s
0
j ¼ sj

0; otherwise:

8>><
>>:

FIG. 1. Logical regulatory graph of the bacteriophage lambda switch.35

Left: the interaction graph, with the four components CI, Cro, CII, and N.

Right: the logical functions, s denoting the vector ðsCI; sCro; sCII ; sNÞ of the

component levels. For legibility, we rewrite each rule in terms of logical var-

iables, e.g., CI denotes an interaction going out CI with a threshold 1, and it

is true whenever sCI � 1, while CI : 2 denotes an interaction going out CI

with a threshold 2; it is true whenever sCI � 2. Here, for each component,

we provide the rule(s) leading to a non-zero value of the logical function

(meaning that when none of these conditions is fulfilled, the value is 0). For

instance, the rule for KCIðsÞ ¼ 2 is satisfied for 30 states (those such that

sCro ¼ 0 or sCII ¼ 1); for all other states, CI’s target value is 0. Note that val-

ues 1 of CI and Cro are always transient for this set of rules.
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Note that updates are performed stepwise and thus tran-

sitions connect neighbouring states (i.e., their Hamming dis-

tance is 1).

We are often interested in a sub-graph of the full STG,

which is generated considering a (set of) initial state(s).

Then, the property of interest relates to the attractors reach-

able from this (set of) initial condition(s). Figure 2(a)

displays the STG obtained for the phage lambda model,

starting from a state where all variables are set to zero.

Attractors, which denote asymptotical behaviors, are

defined in a STG as its terminal strongly connected compo-
nents (SCCs). Recall that strongly connected components

are defined as the maximal strongly connected subgraphs

(i.e., there is a path from each node to every other

node).5,13

Given E¼ðS;TÞ a STG, we introduce further notation:

• Scc is the set of the SCCs of E;
• 8s; s0 2 S; s s0 means that there exists a path from s to s0

(we consider that a sequence of a unique state forms a

path of length 0, hence s s);
• 8s 2 S; 8C 2 Scc; s C means that there exists a path

from s to any state s0 2 C;
• S is the set of the trivial SCCs (i.e., reduced to a single

node) S ¼ ffsg 2 Scc; s 2 Sg;
• C is the set of the complex SCCs: C ¼ fC 2 Scc; #C �

2g (or C ¼ SccnS);
• The sign � denotes terminal elements of Scc that will be

referred to as attractors: C� is terminal iff 8s 2 C�; 8s0
2 S; Tðs; s0Þ ¼ 1) s0 2 C�. The non-terminal compo-

nents are transient. In addition, C� (resp. S�) denotes the

set of the complex attractors (resp. the set of stable states).

Definition 4. Let A� be an attractor, we define BA� the
basin of attraction of A� : BA� ¼ fs 2 S; s A�g. We further
define �BA� , the strict basin of attraction of A�,

�BA� ¼ fs 2 BA� s:t: 8X� 2 ðC� [S�ÞnfA�g; s 62 BX�g:

Hence, A� can be reached from any state in BA� or in
�BA� ; no other attractor can be reached from any state in �BA� .

C. Coping with large dynamics

Given a logical regulatory graph, the associated state

space has
Q

gi2G jDij elements (i.e., 2jGj, in the case of

Boolean variables), meaning that its size grows exponen-

tially with the number of regulatory components. Most prop-

erties are thus NP-complete, but one can mitigate this

problem by lessening the size of the search space.

Here, we briefly review strategies to ease the analysis of

large dynamics. A first approach consists in reducing the

model, while ensuring the preservation of key properties.

Another strategy lessens the number of transitions of the

STG (hence simplifying the dynamics) assigning priorities to

updating calls, relying on biologically well-founded assump-

tions. Other methods enable the reduction of the size of a

STG, either by compacting it without losing any information,

by applying appropriate reductions, or by considering alter-

nate representations. Finally, we end this section with a short

discussion on model-checking applied to multilevel logical

models.

1. Model reduction

A first strategy to reduce the complexity of a model is to

reduce its size, by removing some components. This is often

done manually by the modeler, defining direct interactions

even when it is known that the regulatory effects involve in-

termediate components. Obviously, by lessening the number

of components, such reductions lead to smaller state spaces

and hence simplified dynamics.

We have proposed to automate such model reductions

and characterized their impact on the dynamics.29 Basically,

the reduction of a component amounts to attribute its regula-

tory role to its own regulators and to modify the logical func-

tion driving the behavior of its targets accordingly. The

FIG. 2. Lambda phage model: different views of the dynamics. All the graphs, except that of panel (D), have been generated starting from the initial state (CI,

Cro, CII, N)¼ 0000. (A) STG with the unique stable state indicated in a rectangular node; states sharing the same color belong to the same SCC. (B)

Corresponding graph of the SCCs (same coloring as in panel A). (C) Corresponding HTG; arc labels refer to transitions in the underlying STG (i.e., updates of

regulatory components). (D) HTG obtained using 1000 as initial state, which belongs to component i#7 in panel C; note the absence of a path from this state to

the component i#3 (cf. remark 1). In the SCC and HTG graphs, node labels indicate the nature of the components: i irreversible; ct complex transient SCC; ss

stable state; ca complex attractor; followed by the numbers of states in the component. For components reduced to a single state, the value of this state is

displayed.
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reduction of a self-regulated component is forbidden for it

would not fit this rationale and would change the dynamical

properties of the model. Indeed, we could prove that, pro-

vided this restriction on self-regulated components, the sta-

ble states and elementary terminal cycles of a reduced model

exactly correspond to those of the original model. Moreover,

the reduced model displays at least as many complex attrac-

tors, some corresponding to complex attractors of the origi-

nal model, while others correspond to original transient

oscillatory behaviors. In short, the main property of the pro-

posed reduction is that it may suppress some transitions or

paths, but never generates new ones.

Considering signaling networks including non-regulated

input components, which usually account for external stim-

uli, Saadatpour et al. recently proposed to reduce input

cascades that stabilize under constant input conditions.32

This reduction has obviously no impact on the number and

nature of the attractors, although it might change their reach-

ability. Similarly, one can ignore (pseudo-)output compo-

nents that have no outgoing interactions or that only regulate

(pseudo-)output components.28 Indeed, such output cascades

have no impact, neither on the number and nature of the

attractors, nor on their reachability.

2. Priority classes

Asynchronous state transitions graphs can be sometimes

simplified by reducing the number of transitions, using rela-

tively simple temporal assumptions. Indeed, in all states, the

asynchronous scheme defines as many transitions as the

number of components called to update, thus potentially gen-

erating spurious trajectories. A number of these can be

ignored by defining priority classes ranking updating calls.14

When two calls with distinct priority ranks are enabled in a

state, the one with the lowest rank is discarded. Updatings

belonging to the same class can be treated synchronously or

asynchronously. In GINsim, it is thus possible to partition

component updatings into distinct classes that implement

such a priority scheme.9,26 Needless to say, priority classes

should be biologically well-founded to ensure that discarded

trajectories are indeed irrelevant.

3. Lessening the size of the state transition graph

Several studies have addressed the problem of the com-

binatorial explosion of the state space of asynchronous tran-

sition systems.

Given a STG, an informative view of the dynamics is

provided by the graph of its SCCs, where each node accounts

for one SCC (possibly keeping the information of the states

it encompasses). The resulting graph is a directed acyclic

graph, which is often much smaller than the original STG,

yet keeping all the reachability information (see Figures 2(a)

and 2(b)). Tarjan defined an efficient algorithm to compute

the SCCs of a directed graph (linear in the number of nodes

and arcs).34 Tournier and Chaves39 have already applied

SCC decomposition to STGs. However, SCC compaction

remains limited in the case of networks with long or numer-

ous regulatory cascades, which give rise to multiple linear

(although potentially branching) pathways in the resulting

STGs.

Another approach that keeps the whole STG structure

applies to models that encompass a significant number of

input components. These account for external stimuli (e.g.,

environmental cues) and the corresponding variables are

generally maintained constant. In this case, the STGs corre-

sponding to different combinations of input values are dis-

connected. Input components may also be considered as

“uncontrolled” variables, which are allowed to freely vary at

each time step. A natural reduction consists in projecting the

state space on the set of internal components and labelling

each transition with the values of the input components that

enable that transition (for more details, see Ref. 24).

Other strategies, mainly developed by the formal verifi-

cation community, reduce the state space yet ensuring that

truth values of (linear) temporal logic formulas are pre-

served. This is the case of partial-order reduction methods

that basically consist in identifying, for each state, a subset

of transitions to explore (hence not exploring all the succes-

sors). Alternative (rather similar) definitions of these sets

have been proposed, called stubborn, ample, or persistent

sets.12,19

Relying on the Petri net representation of logical regula-

tory graphs8 and using Petri net tools (e.g., TINA6), we have

recently applied such a partial-order reduction to check

reachability properties on a large logical model (encompass-

ing 72 regulatory components). For this specific model, due

to the structure of its dynamics, partial-order reduction

proved to be poorly effective. However, there is certainly

room for improvements of these methods,16 and further work

might identify a class of logical graphs more amenable to

this kind of reductions.

4. Model-checking

During the recent years, formal verification techniques

based on model-checking have been successfully applied to

the analysis of molecular network models.4,7,24,25 This

approach is directly applicable to the verification of logical

regulatory graphs, which constitute a class of finite state sys-

tems. In general, experimentally observed biological behav-

iors can be expressed in terms of temporal logic statements,

and model-checking algorithms used to automatically verify

if a model satisfies these statements.

When using explicit representations of states and transi-

tions, model-checking may use partial-order reduction to

lessen the size of the search space. However, symbolic

model-checking relies on implicit representations, scaling

better for large models. The choice of the temporal logic

depends on the type of property to be checked.12 Here, we

are mainly interested in attractor reachability from a (set of)

initial condition(s) as well as in the conditions enabling such

trajectories. This supposes a previous characterization of the

attractors, among which the stable states can be efficiently

identified beforehand.9

GINsim includes an export converting logical models

into NuSMV symbolic descriptions.24 NuSMV is a symbolic

model-checking tool capable of verifying finite state
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machines against a set of property requirements, expressed as

temporal logic formulas.11 This export supports the definition

of priority classes and takes advantage of the reduction over

input components evoked in Sec. II C 3, these being specified

either as constant or as freely varying variables. Noteworthy,

in the case of varying inputs, the notion of stable states needs

to be extended: a state may be stable for given values of input

components, and not for others.28 For models with input com-

ponents, it is thus possible to analyze switches between cellu-

lar types (i.e., stable states) and verify the corresponding input

component variations (see Sec. IV and Figure 6).

III. HIERARCHICAL TRANSITION GRAPH

This section deals with the definition and properties of a

novel, compact hierarchical graph, where a set of states is

shrunken into a single node, whenever it forms a Strongly

Connected Component (SCC), or a (set of) linear chain(s)

leading to the same set of SCCs and attractors. Compared to

the SCC graph mentioned above, this graph generally corre-

sponds to a further reduction of the State Transition Graph

(STG). Furthermore, the resulting grouping of states greatly

eases the interpretation of the structure of the dynamics in

terms of basins of attraction.

A. Definitions

Let us first define the application r that associates to

each SCC C, the set of SCCs, complex or terminal, that are

reachable from C, including C itself if it is complex or

terminal

rðXÞ ¼ fC 2 C [S� s:t:X ¼ C or 8 s 2 X; s Cg :

Furthermore, we define I � 2S, the set of irreversible
transient components in which trivial non-terminal SCCs

(elements of SnS�) that have the same r-image are grouped

together

I ¼ fI 2 2S s:t: 8s 2 I; fsg 2 SnS� and

s; s0 2 I ) rðfsgÞ ¼ rðfs0gÞg:

Definition 5. Given a STG E ¼ ðS; TÞ, we denote
H ¼ ðC [ I [ S�; T Þ its corresponding Hierarchical
Transition Graph (HTG), where T : ðC [ I [ S�Þ2 ! f0; 1g
defines the arcs ofH

T ðC;C0Þ ¼ 1() 9s 2 C; 9s0 2 C0 s:t: Tðs; s0Þ ¼ 1:

Each complex SCC of the STG is contracted to a single

node in the HTG. Similarly, a single HTG node accounts for all

trivial SCCs sharing the same r-image. Figure 2 provides an

illustration of the HTG construction for the lambda phage model.

B. Properties

For two components C; C0 2 C [ I [S�, the notation

C 
H

C0 indicates the existence of a path from C to C0 in the

HTG. The following property relates paths in the STG to

paths in the corresponding HTG.

Property 1.

1. A path connecting any HTG component to a non-
irreversible component implies the existence of a path in
the corresponding STG

8C 2 C [ I ; C0 2 C;

C 
H

C0 ) s s0 8s 2 C; 8s0 2 C0:

2. A path between two states in the STG implies the existence
of a path between the HTG components they belong to

8s; s0 2 S; s s0 ) C 
H

C0; with s 2 C; s0 2 C0:

Proof.

1. Let C 
H

C0, with C 2 C [ I and C0 2 C [S�. Then,

C0 2 rðCÞ : 8s 2 C; s C0 and the first item of Property 1

is proved by definition.

2. Let s; s0 2 S s:t: s s0, and denote C and C0 the compo-

nents of the HTG, such that s 2 C and s0 2 C0.

• If C ¼ C0, the statement is obviously true.
• If C 6¼ C0, let ðs ¼ s1; s2;…; sk ¼ s0Þ be the path from s

to s0 in the STG: 8i ¼ 1;…; k � 1; si 2 S and

Tðsi; siþ1Þ ¼ 1; if 8i ¼ 1;…; k; Ci denotes the compo-

nent of Scc such that si 2 Ci, we have T ðCi;Ciþ1Þ ¼ 1

or Ci ¼ Ciþ1. Hence, following the path s s0, we

obtain that C 
H

C0.
Remark 1. Property 1 does not ensure equivalence of

path existence in STG and related HTG. Indeed, in item 1,
we have the restriction that C0 62 I : when C 

H
C0, with

C0 2 I , given s 2 C, we cannot ensure the existence of a
path in the STG from s to a state s0 2 C0.

In Figure 2, we have such a situation, where C 
H

C0,
with C0 2 I and 9s 2 C s.t., there is no path in the STG from
s to any state in C0. Indeed, considering Figure 2, panel C, the
irreversible component i#7 contains the state 1000 (see panel
B), and the arc from i#7 to i#3 indicates that there exists a
state s 2 i#7 and a state s0 2 i#3 such that s s0 (e.g., T(1011,
2011)¼ 1, in panel A or B). However, there is no path from
state 1000 to any state of i#3 as illustrated in panel D.

Another typical situation for which we have
C 
H

C0; C0 2 I , and no path in the STG from s 2 C to
s0 2 C0, may arise when a hierarchical (irreversible) compo-
nent contains disconnected states.

We propose an algorithm to generate HTGs of logical

regulatory graphs, given a (set of) initial condition(s).

Described in the supplementary file,43 this algorithm is based

on Tarjan’s method34 and compacts a STG on-the-fly.

C. Basins of attraction

A classical way to study the dynamics is to focus on

attractors and their basins of attraction (cf. Definition 4).

When using the synchronous dynamics, their computation is

facilitated by the fact that all states have at most one succes-

sor (for more details, see Ref. 42). But in the case of concur-

rent behavior, it is computationally much more costly (see

Refs. 1, 39, and 41 for the fully asynchronous case).
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By construction, the HTG nodes group together states of

the STG and thus allow to easily recover the basins of attrac-

tions. Indeed, given A� an attractor in the STG, and C 2
C [ I [S� a node of the HTG, the states of C are in BA� ,

the basin of attraction of A�, iff A� 2 rðCÞ. The states of C
are in �BA� , the strict basin of attraction of A�, iff

rðCÞ \ ðC� [S�Þ ¼ fA�g. Hence, for all attractors, it is

much easier to identify their basins of attraction on the basis

of the HTG.

Irreversible decisions are taken at the intersections of

the basins of attraction. Given two consecutive nodes X1 and

X2 in the HTG (T ðX1;X2Þ ¼ 1), crucial decisions can be

associated with the arc linking these nodes if rðX1Þ \ ðC� [
S�Þ 6¼ rðX2Þ \ ðC� [S�Þ (i.e., the system enters a more re-

stricted basin of attraction). Consider two attractors A�1 and

A�2 such that A�1 2 rðX1Þ \ rðX2Þ; A�2 2 rðX1Þ and A�2/rðX2Þ.
We say that the transition ðX1;X2Þ belongs to the boundary
of BA�

2
: removing all such transitions would isolate BA�

2
from

the rest of the HTG. In Figure 2(c), transitions ðct#31; ct#2Þ
and ðct#31; ca#2Þ constitute the boundary of Bss�2000.

IV. APPLICATION TO Th CELL DIFFERENTIATION

T-helper lymphocytes play a key role in the regulation

of the immune response in vertebrate. Various T-helper sub-

types (Th1, Th2, Th17, Treg) have been identified over the

years, characterized by the expression of specific transcrip-

tion factors and cytokines, which have a critical influence on

the selection of specific immune responses, driving pro-

inflammatory or allergic responses, promoting alternative

antibody classes, or yet preventing (auto)immunity by inhibi-

ting the activation and proliferation of other cells.

Several modeling studies have been proposed to shed

light on the regulatory network controlling T-helper cell acti-

vation and differentiation (see, e.g., Refs. 20, 21, 23, 33, 40

and references therein).

To gain insight into the heterogeneity and the plasticity

of late T-helper lineages, we have recently built an integrated

logical model of the core regulatory network and main sig-

naling pathways controlling Th cell differentiation27 (Figure

3). Encompassing 65 components (including 13 inputs,

corresponding to antigen presentation and a dozen different

cytokines), this multilevel logical model proved to be too

complex to be straightforwardly simulated. This situation

motivated the development of the reduction method men-

tioned above.27,29 In the case of our T-helper model, we

were led to hide 31 components (shown in grey in Figure 3)

and thus obtained a more compact model encompassing 34

nodes (including the same 13 inputs).

Using the resulting reduced T-helper model, we have

performed a series of simulations to assess the effects of het-

erogeneous environments on Th cell differentiation. This led

us to identify stable states corresponding to canonical Th1,

Th2, Th17, and Treg subtypes, but also to hybrid cell types

co-expressing combinations of Th1, Th2, Treg, and Th17

markers in an environment-dependent fashion.

Here, we apply the HTG construction to this reduced

model in order to demonstrate how the dynamics can be

compressed in a meaningful way, emphasizing the structure

of the underlying STG, as well as crucial decision points

along dynamical pathways. In this respect, we have selected

a limited number of simulations leading to STGs of increas-

ing complexity.

Figure 4 displays the HTGs obtained when simulating a

naive T-helper cell stimulated by an antigen presenting cells

in the presence of IL2 alone, or in the presence of pro-Th1,

Th2, Treg, or Th17 cytokines. In all cases but the last one,

we obtain a unique stable state corresponding to the expected

cellular state (activated Th0, Th1, Th2, or Treg). In each of

these HTGs, all other states reachable from the initial condi-

tions are grouped together into a single irreversible transient

component, encompassing between 25 and 255 states. The

label associated with each arc denotes the ultimate elemen-

tary transitions going out the HTG node. In contrast, in pro-

Th17 conditions, the system can reach two different stable

states expressing Th17 transcription factor RORGT, IL10,

IL21, and IL23, one expressing also FOXP3, the other

expressing IL2. From the arc labels, it follows that the selec-

tion between these two stable states depends on the concur-

rent activation of RORGT and FOXP3.

Figure 5 (top) displays the HTG obtained when simulat-

ing a naive T-helper cell stimulated in mixed pro-Th2/pro-

FIG. 3. Th differentiation regulatory

graph. The top nodes correspond to

inputs (APC and external input cyto-

kines), while nodes placed at the bottom

correspond to key transcription factors.

Nodes considered for reduction are

emphasized in grey. Green arrows denote

activations, red blunt arcs denote inhibi-

tions while the blue arc from NFKB to

IL17 denotes a dual interaction (see Ref.

27 for details).
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Th17 environment, i.e., in the presence of IL4, IL6, TGFB,

and in the absence of IL2. The resulting HTG merely com-

prises 13 nodes, to be contrasted with the 1146 states of the

corresponding STG. Furthermore, the HTG structure empha-

sizes the progressive commitment of cells when following

paths from the root to the leaves (stable states). The states

encompassed by other nodes belong to two or more basins of

attraction. Note that the system can reach four stable states,

more precisely two pairs of activated versus anergic Th2

RORGTþ subtypes. Within each of these pairs, the stable

states differ by the expression level of FOXP3. The labels

associated with the arcs clearly emphasize the transitions

implementing differentiation decisions. As illustrated in

Figure 5 (bottom), the use of priorities significantly

decreases the size of the dynamics; selecting updates of

ILR2, NFAT, and any of the STAT factors against other

component updates led to an HTG of 5 nodes (encompassing

31 states) instead of 13 nodes (encompassing 1146 states),

where the two anergic cellular types are the only reachable

stable states.

FIG. 4. HTG representation of asynchronous simulations of naive Th cells in simple polarizing environments. These HTGs correspond to the simulation of Th0

cells in the presence of APC signalling þ IL2 alone, with INFG (pro Th1), or with IL4 þ IL6 (pro Th2), or with TGFB (pro Treg), or with TGFB and IL6

(pro Th17), from top to bottom and left to right. All other nodes are set to zero at the initial state. In the notation of the logical stable states (prefixed by "ss-"), the

node order considered starts with APC, followed by the external input cytokines IFNB, INFG, IL2, IL4, IL6, IL10, IL12, IL15, IL21, IL23, IL27, TGFB, followed

by the receptor components IL2R and IL2RA, and then by the cytokines produced by the Th cell considered INFG, IL2, IL4, IL10, IL21, IL23, TGFB, then the

transcription and signal transduction factors TBET, GATA3, FOXP3, NFAT, STAT1, STAT3, STAT4, STAT5, STAT6, followed by the proliferation node, fol-

lowed by RORGT and IL17. Arc labels indicate transitions (regulatory component updates) driving the system out of an HTG node toward another one.

FIG. 5. Compressed representation (HTG) of the asynchronous simulation of Th0 in the presence of APC signaling þ IL4 þ IL6 þ TGFB (combination of pro

Th2 and Th17 cytokines, in the absence of IL2). Four stable states can be reached: two pairs of activated versus anergic Th2 RORGTþ cells, differing by the

expression of FOXP3. The bottom part shows the HTG obtained for the same initial conditions but using two asynchronous priority classes. In this configura-

tion, transitions involving IL2R, NFAT, or any of the STAT factor are selected against those involving any other component. In contrast with the results

obtained without prioritization, only two stable states can be reached, both corresponding to anergic Th2 RORGTþ cells, which differ by the expression of

FOXP3. The labels associated with the arcs emphasize the crucial transitions underlying the choice of one or the other differentiation state.
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A thorough discussion of the biological significance of

these observations would go beyond the scope of this article.

However, these examples demonstrate the compression

and clarification of asynchronous simulations that can be

achieved using the HTG representation.

Finally, Figure 6 displays the reachability analysis

between cellular types through the use of model-checking.

For this, we considered the environmental conditions defined

by specific valuations of the 13 input components (see

Figure 5 of the original study, i.e., in Ref. 27) and the stable

expression patterns (see Figure 6 in Ref. 27). These stable

states correspond to cellular subtypes, which are stable under

specific environmental conditions. So, for each input combi-

nation, we verify the existence of a direct path between each

possible pair of cellular types. More precisely, we check

whether there is a fixed valuation of inputs such that there is

a direct path between two cellular subtypes, C1 and C2

(without going through other cellular subtypes) and C2 being

stable. Using this approach, we could reproduce the results

obtained at the cost of extensive simulations in the original

study (Figure 7 in Ref. 27). Three main groups are defined

over the Th cell subtypes (Th0, Th1, and Th2, see Figure 8

in Ref. 27). We could also verify that Th1 and Th2 subtypes

can never switch back to a Th0 one, even when inputs are

allowed to vary freely. However, in such case, switches

between all cellular subtypes are possible within each group.

V. CONCLUSION AND PROSPECTS

HTGs emphasize relevant transient and asymptotic dy-

namical properties. We have defined a novel algorithm ena-

bling the compaction of state transition graphs and the

generation of HTGs on-the-fly. This approach has been

implemented into a development version of the software

GINsim, available as a pre-release.30

We have applied this approach to a comprehensive

model for T-helper cell differentiation. Although this model

still needs to be further refined and tested, the analysis pre-

sented here clearly demonstrates the assets of the HTG repre-

sentation, which leads to significant graph compression and

clearly emphasizes the organization of the state space into

attractors and basins of attraction.

Interestingly, applying our algorithm for HTG construc-

tion onto a HTG produces a further compacted graph-based

representation of the dynamics, where the nodes correspond

to basins of attraction.

Should a given dynamics be too large and complex to be

effectively compacted using the HTG representation, we can

rely on complementary methods presented in this manu-

script. These methods aim at reducing the size of the search

space, including the model reduction method that preserves

key dynamical properties and the definition of transition pri-

ority classes, relying on biologically well-founded assump-

tions. Moreover, we have presented model-checking

techniques to analyse reachability properties. Used jointly,

these methods enable the dynamical analysis of logical mod-

els of unprecedented sizes.

It is worth noting that the HTG structure could be con-

sidered in the context of other formal approaches relying on

state transition graphs, including Petri nets (see, e.g., Ref. 8

and references therein) and piecewise-linear differential

equation (PLDE) models.3,17 Model-checking techniques

also apply to these models, once their dynamics can be repre-

sented by Kripke structures.12 Our model reduction could be

applied to PLDE models, but its impact on the dynamics still

needs to be clarified.

HTG construction could be optimized and improved,

e.g., using parallel algorithms. Although depth-first search

algorithms are known to be difficult to parallelize,31 different

methods have been proposed to tackle this problem.2

Further analysis relying on HTG structures should allow

the assessment of finer properties. For instance, some well-

established rules (Thomas’ rules36) assert that differentiation

(resp. homeostasis) phenomena lean on the action of a positive

(resp. negative) circuit in the regulatory graphs. In practice, cir-

cuit functionality analysis often points to combinations of inter-

twined circuits, which are difficult to analyze. HTGs appear

particularly well suited to the dynamical analysis of complex

networks endowed with differentiation properties (i.e., present-

ing multiple alternative stable states, which can be all reached

from given initial conditions), as they capture the general orga-

nization of the corresponding STGs. Hence, based on the anal-

ysis of HTG structures, we should be able to identify the

circuits at the core of cell commitment and thereby focus on

the genes responsible for irreversible decisions.

An alternative strategy to analyze large regulatory

networks takes advantage of their modularity. Recently, we

have defined a compositional framework that relies on pro-

cess algebra to incrementally compose, abstract, and mini-

mize (using the safety equivalence) logical regulatory

modules, enabling impressive reductions of the dynamics.22

However, as proper methods to decompose large networks

FIG. 6. Model-checking reachability analysis between cellular types under

fixed input conditions using NuSMV.11 Nodes represent cellular subtypes

(see Figure 6 in Ref. 27), whereas arrows represent the existence of a direct

path between two cellular types under a specific fixed environmental condi-

tion (see Figure 5 in Ref. 27). For simplicity, reachability analysis has been

truncated to the Th0 subtypes, discarding the Th1 and Th2 subtypes.
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into functional modules are still lacking, we have focussed

on regulatory networks that encompass several identical

modules connected by inter-cellular signaling. In this

respect, one could take advantage of HTG structures to come

up with relevant model decomposition.
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