
Vol. 22 no. 14 2006, pages e124–e131

doi:10.1093/bioinformatics/btl210BIOINFORMATICS

Dynamical analysis of a generic Boolean model for the control of

the mammalian cell cycle
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ABSTRACT

Motivation: To understand the behaviour of complex biological

regulatory networks, a proper integration of molecular data into a

full-fledge formal dynamical model is ultimately required. As most

available data on regulatory interactions are qualitative, logical mod-

elling offers an interesting framework to delineate the main dynamical

properties of the underlying networks.

Results: Transposing a generic model of the core network controlling

the mammalian cell cycle into the logical framework, we compare

different strategies to explore its dynamical properties. In particular,

we assess the respective advantages and limits of synchronous

versus asynchronous updating assumptions to delineate the asymp-

totical behaviour of regulatory networks. Furthermore, we propose

several intermediate strategies to optimize the computation of asy-

mptotical properties depending on available knowledge.

Availability: The mammalian cell cycle model is available in a

dedicated XML format (GINML) on our website, along with our logical

simulation software GINsim (http://gin.univ-mrs.fr/GINsim). Higher

resolution state transitions graphs are also found on this web site

(Model Repository page).

Contact: thieffry@ibdm.univ-mrs.fr

1 INTRODUCTION

A proper understanding of the structure and temporal behaviour

of biological regulatory networks requires the integration of

regulatory data into a formal dynamical model (for a review, see

de Jong, 2002). Although this issue has been recurrently addressed

by applying standard mathematical approaches (e.g., differential or
stochastic equations) borrowed from physical sciences, it is notably

complicated by the diversity and sophistication of regulatory

mechanisms, as well as by the chronic lack of reliable quantitative

information.

This situation has motivated the development of intrinsically

qualitative approaches leaning on Boolean algebra or generalisation

thereof (Glass & Kauffman, 1973; Thomas, 1991).

In this paper, we lean on previous work refining, extending

and implementing the logical approach initially formulated by

R. Thomas et al. (Thomas, 1991; Thomas et al., 1995). The cor-

responding framework is summarised in the following section (see

Chaouiya et al., 2003, for more detail). This framework is then

used to derive a logical version of the differential model for the

control of the mammalian cell cycle recently published by Novak

and Tyson (2004). The corresponding regulatory network is

described in the last chapter of the introduction, together with

citations of the most relevant experimental articles (for a didactic

introduction to cell cycle modelling, see Fuß et al., 2005).
In their landmark model analysis, Novak and Tyson have heavily

relied on numerical integration techniques (temporal simulations,

phase space analyses, and bifurcation diagrams) to delineate the

main dynamical properties of the complex regulatory system under

study. Their results are valid for specific sets of parameter values

and function shapes, which are difficult to establish quantitatively.

Furthermore, such parametric analyses can only handle a few

parameters at once.

In contrast, although much more qualitative, the logical frame-

work enables a more systematic and extensive characterisation of

all the behaviours compatible with a given regulatory graph.

Furthermore, this framework offers enumerative or analytical

means to identify relevant asymptotical behaviours (stable states,

state transition cycles, etc.). Finally, extending a logical model to

encompass additional regulatory modules is relatively easy.

However, one difficulty with the logical approach lies in the

implicit treatment of time. In this respect, different approaches

have been proposed, either considering all transitions under a

synchronicity assumption, or considering them under a fully asyn-

chronous assumption, i.e., selecting a single transition at each

dynamical step. The first assumption is simple but leads to well

known artefacts, whereas the results obtained under the second

assumption are more difficult to evaluate. In this paper, we explore

the use of different strategies enabling a honourable compromise

between these two extreme approaches.

1.1 Logical modelling of regulatory networks

The specification of a logical model involves three main steps:

(i) the building of a regulatory graph; (ii) the definition of the

logical parameters of the system; (iii) the specification of the

updating assumption(s).
Cross-regulations between regulatory components are formalized

in terms of an oriented graph. In this regulatory graph, the vertices
represent the different regulatory components (activity of a gene,

concentration of a regulatory product, or level of activity of a pro-

tein), whereas the edges represent regulatory interactions between

these components (including self-regulations). The level or activity�To whom correspondence should be addressed.
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of a regulatory component i is given by an integer, taking its values

in the interval [0, Maxi], where Maxi is the maximal value consid-

ered for this element (in the simplest, Boolean case,Maxi is set to 1).
Each edge is labelled with an interval of integers defining the set of

values for which the source of the interaction influences its target.

Naturally, this interval must be compatible with the values allowed

for the source of the interaction. Furthermore, for sake of simpli-

fication, the maximal value of the interval is usually set to the

maximal value of the source of the interaction (notion of threshold).
Note that this definition allows the specification of multiple inter-

actions between two components, provided that each interaction

involves a specific threshold (alternatively, disjoint contiguous

intervals can be used).

Finally, an edge can also be optionally labelled with a positive or

negative sign, which then specifies that the effect of the source on

the target is monotonous, either potentially activating or inhibiting

the target, respectively. The specification of interaction signs only

affects the graphical representation and must be translated into

proper parameter values to obtain coherent regulatory effects.

The next step consists in defining the combinatory effects of the

regulatory inputs on the expression or activity of a given component

of the regulatory graph. The set of inputs is already specified at the

level of the regulatory graph. However, the effect of each regulator

usually depends on the presence of the co-regulators. For the sake

of conciseness, we consider only the combinations of interactions

allowing a significant (non zero, from a logical point of view)

expression or activity of the regulated component. The correspond-

ing logical parameters are each univocally identified by the set of

interactions acting on the regulated genes and take their values in

[1,Maxtarget] (see the next section for a concrete illustration).

The dynamical behaviour of a logical regulatory model is repre-

sented in terms of an oriented graph, where each vertex represents a

specific logical state of the system (i.e., a vector giving the discrete

levels of expression/activity of all the components), whereas the

edges represent (possible) transitions between these states.

Together with the regulatory graph, the logical parameters define

the rules directing the dynamics of a network, i.e., the potential

occurrence of specific edges in the state transition graph. Indeed, at
a given state, a specific logical parameter can be associated with

each component. If the value of this parameter is smaller or greater

than that of the concentration/activity level of the corresponding

component, this level will tend to decrease or increase, respectively.

Otherwise (when the parameter value and the corresponding com-

ponent level are equal), the component will tend to keep its current

value.

At this stage, different assumptions might be considered. Accord-

ing to the simplest one, at a given state, all increase or decrease calls

are realized simultaneously (synchronous updating), changing the

component levels by one unit at a time (see e.g., Kauffman, 1993).

Easy to implement and computationally efficient, this approach

leads to well known dynamical artefacts (in particular spurious

cycles). At the other extreme of the spectrum, the transition calls

can be asynchronously updated, i.e., one single transition will be

selected at a time. This assumption requires additional rules to sort

out concurring transitions (e.g., the specification of time delays or of

priorities). These additional rules are tricky to define, as they may

perfectly be context sensitive, i.e., finely depend on the levels of

various regulatory components (although these combinations might

correspond to identical parameter values). For this reason, all

possible transitions are often generated, and an asynchronous tran-
sition graph is built where all single possible transitions are con-

sidered, although all resulting dynamical pathways cannot be

followed for a single set of transition rules.

Whatever the updating assumption, of particular interest is the

asymptotical behaviour of the system, e.g., the terminal vertices

(stable states, with no updating calls) or the attractive cycles found

in the state transition graph. Note that such attractors (in particular

the stable states and simple terminal cycles) can easily be located in

the context of the synchronous updating assumption. As we shall

see, the synchronous assumption can often (but not always) be

considered as a shortcut for the computation of the asynchronous

dynamics. This point will be further assessed below through the

analysis of a logical model of the core network controlling the

mammalian cell cycle.

To ease the definition of a regulatory graph and of the associated

logical parameters, as well as the construction of the (a)synchronous

state transition graphs, we have developed a logical modelling/

analysis/simulation software called GINsim (Gonzalez et al.,
2006). A new release of GINsim now implements the possibility

to play with the different updating assumptions and to define

different priority classes.
Let consider a regulatory graph with n nodes {g1, g2, . . . gn}. A

logical state is a vector S¼(s1, s2, . . . sn) where si is the current level
of the ith regulatory product (si 2 {0, . . .Maxi}). Given such a state,
it is possible to determine the evolution of gi, for all i ¼ 1, . . . n.
Indeed, given any regulatory component gi, the interactions which
are operating on gi in the state S can be identified, and the relevant

logical parameter (i.e., corresponding to the right combination of

incoming interactions) gives the value ki to which gi should tend. If

si > ki (the current level is greater than the parameter value), there is

a call for decreasing the level of gi, (a decrease call on gi is denoted
gi#); if si < ki, there is a call for increasing the level of gi (denoted
gi"); otherwise (if si ¼ ki), there is no updating call for this com-

ponent. A stable state is thus a state without updating call.

The synchronicity assumption amounts to apply all concurrent

transitions simultaneously, all states having thus at most one suc-

cessor; under the asynchronous assumption, concurrent transitions

are applied separately, and a state with q updating calls has then

exactly q successors.

Here, we introduce a new functionality of GINsim consisting in

the definition of p priority classes C1, C2, . . . Cp, with p � n, which
gather regulatory products depending on their qualitative pro-

duction and/or degradation delays:

(i) each class Ci is associated with a rank r(Ci) (1� r(Ci)� p, 1

being the highest rank), as well as with an updating policy

(synchronous or asynchronous);

(ii) several classes may have the same rank; and concurrent tran-

sitions on genes of different classes with identical rank are

triggered asynchronously;

(iii) at any state S, among all concurrent transitions, only those on

genes of the classes with the highest rank are triggered;

(iv) concurrent transitions inside a class are triggered accordingly

to the updating policy associated to that class;

(v) finally, increasing and decreasing transitions of each gene

can be distinguished and associated to classes with different

ranks.
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1.2 Regulation of the mammalian cell cycle

The cell cycle involves a succession of molecular events leading to

the reproduction of the genome of a cell (Synthesis or S phase) and

its division into two daughter cells (Mitosis, or M phase). The M

phase itself encompasses different sub-phases (prophase, meta-

phase, anaphase, telophase) characterised by specific chromosomal

and nuclear changes (respectively: condensation of the chromatin,

alignment of the chromosomes, separation of the sister chromatids,

and formation of the two daughter nuclei). The S and M phases are

preceded by two gap phases, called G1 and G2 respectively (for a

review, see, for example, Tessema et al., 2004). These events

are very well known and can easily be monitored with an optical

microscope.

During the late 1970s and early 1980s, yeast geneticists have

identified the cell-division-cycle (cdc) genes, encoding for new

classes of molecules including the cyclins (so called because of

their cyclic pattern of activation), and their cyclin dependent

kinases (cdk) partners. Since then, our knowledge of the molecular

network that controls cell cycle events has tremendously pro-

gressed, but the number of components and interactions known

to be involved has so much increased that proper formal modelling

becomes necessary to understand the behaviour of such a

complex system.

Our model analysis is rooted in the seminal work of Novak

and Tyson, who have recently derived and analyzed a set of 18

ordinary differential equations (ODE) to model the control of the

restriction point of the mammalian cell cycle (Novak and Tyson,

2004). Based on this differential model and using numerical inte-

gration techniques, the authors were able to qualitatively reproduce

the main known dynamical features of the wild-type biological

system, as well as the consequences of several types of perturba-

tions. This state-of-the-art model study nevertheless appears diffi-

cult to extend, although there is clearly many more regulators,

variants and interactions to consider (see, e.g., Kohn’s map at

http://discover.nci.nih.gov/kohnk/fig6a.html).

In this respect, the logical formalism offers an appropriate

framework to qualitatively explore the dynamical properties of

relatively complex regulatory graphs. However, up to now, it has

been mostly applied to transcriptional regulatory networks, and its

application to the numerous and various protein interactions at the

core of the cell cycle network was thus a challenge.

As a starting point, we have used Novak and Tyson’s diagram

and model to build a logical regulatory graph (see Figure 1). In the

process, we were led to derive a proper logical representation for

each type of regulatory interaction. In what follows, we summarize

the main experimental data and assumptions underlying our

regulatory graph. In the context of this paper, we further focus

on a specific Boolean version of this model.

Mammalian cell division is tightly controlled, for it must be

coordinated with the overall growth of the organism, as well as

answer specific needs, such as wound healing for example.

This coordination is achieved through extra-cellular positive and

negative signals whose balance decides whether a cell will divide or

remain in a resting state (quiescence or G0 phase), which can be

reached and left by the cell during the G1 phase. The positive

signals or growth factors ultimately elicit the activation of

Cyclin D in the cell. In our model, CycD thus represents the

input, and its activity is considered constant. Note that cdk4 and

cdk6, the partners of Cyclin D, are not explicitly represented in our

model, for their activity essentially depends on the presence or

absence of their cyclin. In other words, CycD stands here for the

whole cdk4/6-Cyclin D complex. The same approach has been

adopted for the other cyclin/cdk pairs.

In our model, CycD is necessary for the inactivation of the

retinoblastoma protein Rb, and for the sequestration of p27/Kip1

(p27 in the sequel). This protein is a cdk inhibitor that sequesters

cdk2/Cyclin E (CycE) and cdk2/Cyclin A (CycA), preventing

them from phosphorylating their targets (reviewed in Coqueret,

2003). It is usually considered that Cyclin D remains active

when in complex with p27, though the issue is still debated

(Olashaw et al., 2004). For the sake of simplicity, we consider

that CycD directly inhibits p27.

In contrast, the complexes formed by p27 and CycE or CycA

are represented in a subtler way, though this formation remains

implicit: when both p27 and CycE or CycA are active, the complex

forms, and the activity of the cyclin is blocked. To model the fact

that the cyclins remain present though sequestered when linked to

p27, we consider that p27 opposes their activities on their targets,

instead of directly inhibiting them. In our model, this is embodied

by arrows from p27 onto the targets of CycE and CycA, with a sign

opposite to that corresponding to the effect of the cyclins on their

targets in the absence of p27.

The other target of CycD, Rb, is a key tumour suppressor,

which is found mutated in a large variety of cancers. Rb is inac-

tivated by phosphorylation, and CycD is involved in the first step of

this process (reviewed in Tamrakar et al., 2000). However, in this

simplified Boolean model, we consider that Rb inactivation by

CycD is total.

Rb forms a complex with members of the E2F family of

transcription factors, turning them from transcriptional activators

to repressors, in part through recruitment of chromatin remodelling

Fig. 1. Logical regulatory graph for the mammalian cell cycle network. Each

node represents the activity of a key regulatory element, whereas the edges

represent cross-regulations. Blunt arrows stand for inhibitory effects, normal

arrows for activations.
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complexes. For this reason, we model the action of Rb by direct

inhibitions of E2F targets (which include E2F itself).

E2F is a wide family of dimeric transcription factors, formed

by a member of the E2F family, and a member of the DP family.

It is usually divided into activators E2Fs (E2F1, E2F2, E2F3a)

and repressors E2Fs (E2F3b, E2F4, E2F5), plus the recently dis-

covered E2F6, E2F7 and E2F8, whose structure, regulation and

mode of action are slightly different from those of the regular
E2Fs (Dimova and Dyson, 2005). In our present model, E2F

represents the activator members (together with their DP partners),

the other E2Fs being implicit.

At the G1/S transition, E2F activates the transcription of

Cyclin E, which in turns causes the inactivation of Rb. CycE

also phosphorylates p27, eliciting its destruction. Phosphorylated

Rb dissociates from E2F, allowing more Cyclin E to be transcribed,

further increasing the phosphorylation of Rb and the destruction of

p27, in a positive feedback loop.

Cyclin A is another target of E2F, which is activated slightly

after Cyclin E, when Rb is more completely inactivated

(Zhang et al., 2000). The action of CycA contributes to maintain

Rb and p27 inhibition, inactivates E2F and CycE and most impor-

tantly, inactivates the Anaphase Promoting Complex (APC).

The APC is an important E3 ubiquitin ligase that is activated in a

cyclic fashion (reviewed in Harper et al., 2002). The APC complex

is represented by its two activators, Cdh1 and Cdc20. Around the

G2-to-M-phase transition, CycA inactivates Cdh1, which switches

the APC OFF, allowing Cyclin B to appear. Cyclin B in turn

activates Cdc20, sowing the seeds of its own destruction, since

CycB is a target of Cdc20. Cdc20 is responsible for the metaphase-

to-anaphase transition: it activates separase through the destruction

of its inhibitor securin; this activation elicits the cleavage of

the cohesin complexes that maintain the cohesion between the

sister chromatids, thus leading to their separation. Cdc20 also par-

ticipates in degrading CycA, and indirectly activates Cdh1. Cdh1

completes CycA and CycB inactivation, and inactivates Cdc20. In

absence of its inhibitors, E2F can be reactivated and a new cycle

begins.

How Cyclin A can rise a level high enough to inactivate its

own inhibitor has long remained a paradox. Rape and Kirshner

(2004) solved it by highlighting the role of the E2 ubiquitin con-

jugating enzyme UbcH10). They found that UbcH10 is necessary

for Cdh1 dependent degradation of Cyclin A, but not of the other

APC substrates; once all of its substrates have been degraded,

UbcH10 can ubiquitinate itself, preventing the APC from degrading

Cyclin A, which can thus reappear. These findings make the activa-

tion of Cyclin A in S phase coherent with the observation that Cdh1

is still active at this point of the cycle (Huang et al., 2001). At the
present stage, the explicit inclusion of UbcH10 constitutes the most

remarkable extension of Novak & Tyson’s model. It further allows

us to incorporate an important additional interaction, the inactiva-

tion of CycA by Cdh1 (within the APC complex).

2 RESULTS

2.1 Regulatory graph and its parameterization

The Figure 1 displays the regulatory graph integrating all the data

briefly reviewed in the introductory section.

On the basis of this graph and using additional information

from the literature, it is possible to derive a set of rules enabling

the activation of each of the regulatory component encompassed by

this graph. Presented in Table 1, these rules are sufficient to derive

all the non-zero logical parameters enabling the recovery of the

main known features of the wild-type cell cycle.

In its present Boolean version (i.e., Maxi ¼ 1 for all regulatory

components), our model is still simple enough to allow an

exhaustive dynamical analysis with the logical simulation software

GINsim. The complete state transition graph contains 1024 vertices

(i.e., Boolean states). To study the dynamical trajectories corre-

sponding to the asymptotical behaviour of the system, we still

need to specify an updating assumption. As we shall see, this spe-

cification further determines the pathway(s) followed by the system,

in particular with respect to the cyclic attractor.

2.2 Synchronous versus asynchronous updating

Starting with the simplest, synchronous assumption, we obtain

two attractors. The first one is a stable state with only Rb, p27

and Cdh1 active, in the absence of CycD; this state is reached

from all the other states lacking CycD activity (i.e., in the lack

of growth factors; this state thus corresponds to the phase G0 or

cell quiescence).

In contrast, in the presence of CycD, all trajectories lead to a

unique dynamical cycle, made of a sequence of seven successive

states (Figure 2, bottom left). From a qualitative point of view, the

order of activity switching (off or on) matches the available data, as

well as the time plots published by Novak and Tyson (2004).

Looking more carefully at this synchronous cycle, one can

note that only two arrows correspond to single transitions, namely

the activations of CycA and Cdc20, whereas three arrows corre-

spond to double transitions, and two arrows to triple ones. In such

situations, the synchronous approach impedes any further refined

analysis of these transitions.

One may also consider a fully asynchronous assumption and

generate all the trajectories compatible with the regulatory graph

and the logical rules. Naturally, the stable state is conserved and can

still be reached from all states lacking CycD activity.

Similarly, in the presence of CycD activity, the system has a

unique attractor, but this now includes many intertwined cycles

(see Figure 2, top; see also the web supplementary material for

higher resolution graphs). Composed by 112 states, this attractor

is a terminal strongly connected component in the sense of graph

theory. In addition, the part of the state transition graph with CycD

active encompasses several dozens of additional (non terminal)

strongly connected components, each involving a small number

of states (typically four) and potentially representing transient oscil-

lations of few components on the way to the canonical cell cycle.

Interestingly, the seven states forming the synchronous cycle are

also found in the terminal strongly connected component found in

the asynchronous transition graph (see grey shaded states in

Figure 2, top), together with the corresponding single transitions.

However, the synchronous transitions may now correspond to

multiple asynchronous paths.

2.3 Mixed a/synchronous updating

Between these two extreme updating assumptions, it is possible to

define middle terms. One option is to consider the possibility that

the realisation of some transitions requires several updating steps.

Chaves et al. (2005) have recently explored this option to improve

their Boolean model analysis of the segment polarity network
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involved in the segmentation of the trunk of Drosophila embryos.

Here, we propose an alternative approach enabling the combination

of synchronous and asynchronous assumptions depending on the

regulatory element or on the nature of transition considered. Indeed,

depending on available knowledge or on the biological questions

addressed, it may be necessary to go into fine grain dynamical

analysis for only a subset of regulatory components. To deal

with these issues, the last version of GINsim enables the user to

group components into different classes, and to assign a priority
level to each of these classes. In case of concurrent transition calls,

GINsim first updates the gene(s) belonging to the class with the

highest ranking. For each regulatory component class, the user can

further specify the desired updating assumption, which then deter-

mines the treatment of concurrent transition calls inside that class.

When several classes have the same ranking, concurrent transitions

are treated under an asynchronous assumption (no priority).

To illustrate this approach, we have first built two priority classes,

which arguably group faster versus slower biochemical processes.

In the highest ranked transition priority class, we have included the

degradations of E2F, CycE, CycA, Cdc20, UbcH10, CycB, as well

as all transitions (in both directions) for CycD, Rb, p27 (Kip1) and

Cdh1. The remaining transitions corresponding to synthesis rates (of

E2F, CycE, CycA, Cdc20, UbcH10, and CycB) are grouped in a

lower priority class. Using these two priority classes, both consid-

ered under the asynchronous assumption, we still obtain a single

terminal strongly connected component (not shown) involving 34

states (to compare with the seven states obtained with the standard

synchronous treatment, versus the 112 states in the fully asyn-

chronous case without priority).

The analysis of this component reveals that some pathways are

clearly unrealistic, as they skip the activation of some crucial

cyclins, for example. To eliminate these spurious pathways, one

can further refine the priority classes, taking into account additional

information. Here, we can exploit the fact that several transitions are

controlled by similar regulatory mechanisms and group them

into synchronous classes. This leads to the definition of the four

transition classes displayed in Table 2.

For this last prioritisation, we obtain a smaller terminal strongly

connected component involving 18 states, which combine single

and multiple transitions. This mixed graph is thus much simpler that

the fully asynchronous transition graph. This graph enables a finer

description of the sequence of events characteristic of the normal

cell cycle than in the fully synchronous case. However, the data

presently available do not allow a clear distinction between the

different alternative pathways.

2.4 Mutant simulations

Beyond a faithful reproduction of the wild-type behaviour, a good

cell cycle model should enable the simulation of various types of

Table 1. Logical rules underlying the definition of the logical parameters associated with the regulatory graph of Figure 1

Product Logical rules leading to an activity of the product Justification/References

CycD CycD CycD is an input, considered as constant.

Rb ðCycD ^ CycE ^ CycA ^ CycBÞ
_ ðp27 ^ CycD ^ CycBÞ

Rb is expressed in the absence of the cyclins, which inhibit it by phosphorylation (Novak and

Tyson, 2004; Taya, 1997); it can be expressed in the presence of CycE or CycA if their

inhibitory activity is blocked by p27 (Coqueret, 2003).

E2F ðRb ^ CycA ^ CycBÞ _ ðp27 ^ Rb ^ CycBÞ E2F is active in the absence of Rb, that blocks E2F self-transcriptional activation (Helin, 1998),

and in the absence of CycA and CycB, that inhibit E2F (Novak and Tyson, 2004); CycAmay

be present, if its inhibitory activity is blocked by p27 (Coqueret, 2003).

CycE ðE2F ^ RbÞ CycE activity requires the presence of E2f and the absence of Rb (Helin, 1998).

CycA ðE2F ^ Rb ^ Cdc20 ^ ðCdh1 ^ UbcÞÞ
_ ðCycA ^ Rb ^ Cdc20 ^ ðCdh1 ^ UbcÞÞ

The transcription of CycA is activated by E2F in the absence of Rb, which blocks this activation

(Helin, 1998), in the absence of Cdc20, as well as of the pair formed by Cdh1 and UbcH10,

which both lead to the degradation of CycA (Harper et al., 2002; Rape and Kirschner, 2004);

CycA is stable in the absence of its inhibitors Rb, Cdc20, and of the pair Cdh1 and UbcH10.

p27 ðCycD ^ CycE ^ CycA ^ CycBÞ
_ ðp27 ^ �ðCycE ^ CycAÞ ^ CycB ^ CycDÞðCycE ^ CycAÞ ^ CycB ^ CycDÞ

p27 is active in the absence of the cyclins; when p27 is already present, it blocks the action of

CycE or CycA (but not both of them) by sequestration (Coqueret, 2003).

Cdc20 CycB CycB indirectly activates Cdc20 (Harper et al., 2002).

Cdh1 ðCycA1 ^ CycBÞ _ ðCdc20Þ _ ðp27 ^ CycBÞ The activity of Cdh1 requires the absence of CycB and CycA, which inhibit it by

phosphorylation (Harper et al., 2002); Cdc20 further activates Cdh1. (Novak and Tyson,

2004); p27 allows the presence of CycA, by blocking its activity.

UbcH10 ðCdh1Þ _ ðCdh1 ^ Ubc

^ ðCdc20 _ CycA _ CycBÞÞ
UbcH10 is active in the absence of Cdh1; this UbcH10 activity can be maintained in the

presence of Cdh1 when at least one of its other targets is present (CycA, Cdc20, or CycB)

(Rape and Kirschner, 2004).

CycB ðCdc20 ^ Cdh1Þ CycB is active in the absence of both Cdc20 and Cdh1, which target CycB for destruction

(Harper et al., 2002).

components’’. Finally the last column provides some justifications for the logical rules, together with references.

The names of the components of the regulatory graph of Figure 1 are listed in the first column. For each one, the second column gives the logical rules specifying its behaviour.

More precisely, we have described only the situations where the component is activated (value of the corresponding Boolean variable set to 1), all other situations leading to an

inactivation. This description is based on the classical logical formulation, where ‘‘^’’ stands for ‘‘AND’’, ‘‘_’’ stands for (inclusive) ‘‘OR’’, and the negation is written by a bar over
the term.As anexample, considering the case ofCycE, there are eight non-zeroparameters attached toCycE, specifying thedifferent combinationsof incoming interactionswhich lead to

an activation of CycE (cf. the GINML file on the GINsim website). These can be summarised by the logical formula ‘‘E2F active and Rb not active, whatever the state of the other
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Fig. 2. Simulations of the wild-type cell cycle based on the Boolean model defined in Figure 1 and Table 1. Each vertex (node) represents one state, with the

regulatory components ordered as mentioned in the top panel. The three state transition graphs correspond to the comprehensive asynchronous (top), the

synchronous (bottom left), and amixed (bottom right) assumptions. Note the difference of complexity between the asynchronous and synchronous graphs. In the

bottom panels, solid arrows stand for single transitions, and dotted arrows for multiple transitions. The seven states involved in the synchronous cycle are grey-

shaded in the asynchronous and mixed state transition graphs. For larger resolution pictures, see GINsim website.
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perturbations, in particular, the addition of drugs interfering with

cell growth or cyclin activities, or the presence of loss-of-function

or gain-of-function mutations in some of the core regulatory genes.

In this respect, GINsim provides a simple interface to constraint

selected regulatory components within specific value intervals.

Depending on the initial state(s), once a regulatory component

has reached the corresponding value interval in the course of the

simulation, all transitions leading outside of this interval are

automatically discarded. This function greatly eases the simula-

tion of loss-of-function and gain-of-function mutants (a table

compiling our mutant analyses is maintained on the GINsim web

page). As we have represented molecule families by single com-

ponents, the comparison between in silico and experimental

results are not always straightforward. However, up to now, all

our simulation results are consistent with available experimental

data (loss versus preservation of cell cycle depending on the mutant

considered), but a few exceptions like the case of the p27 loss-of-

function, for which our model predicts a stable state in the absence

of CycD, whereas published data support the existence of oscilla-

tions in this situation. This discrepancy is likely due to the crude

representation of CycE and Rb activity levels in terms of Boolean

variables and could be solved by using ternary variables for these

elements.

3 CONCLUSIONS AND PROSPECTS

In this paper, we have assessed the power of the logical approach,

already in its simplest Boolean form, for the modelling of a complex

protein interaction network. We have further presented extensions

of our software GINsim to enable detailed studies of the asymptoti-

cal behaviour of complex systems, with synchronous, asynchronous

or mixed treatment of concurrent transitions.

As shown through the analysis of a model for the mammalian cell

cycle, a relatively simple logical model captures most qualitative

dynamical features of the wild-type network, as well as of docu-

mented mutants. Strikingly, even simplistic synchronous simula-

tions give rise to (only) two attractors consistent with available data,

as well as with the simulations of Novak and Tyson (2004). On the

one hand, we obtain a stable state in the absence of CycD, which

matches our knowledge of quiescent cellular states when growth

factors are lacking. On the other hand, in the presence of CycD, all

trajectories converge towards a unique complex dynamical cycle.

This is a favourable situation for the synchronous assumption, as no

spurious cycle is generated.

However, the synchronous dynamics obtained does not allow

the temporal separation of multiple regulatory activity changes.

In contrast, asynchronous updating does allow finer temporal

analyses, but the resulting state transition graph is very complex

and encompasses many incompatible or unrealistic pathways. Lean-

ing on specific GINsim functions, we have thus considered system-

atic ways to combine synchronous and asynchronous transitions,

taking advantage of existing information on kinetics or regulatory

mechanisms. This application thus illustrates the flexibility of the

combination of different updating assumptions.

The logical formalism used should further enable the identifica-

tion of the regulatory circuits playing the most crucial dynamical

roles (Thomas et al., 1995). Our present model comprises 132

different circuits, involving from one to nine regulatory elements.

A preliminary analysis suggests that only a dozen of these circuits

are functional in some region of the variable space, most of the time

only in the absence of CycD. The precise role of these different

circuits has still to be clarified.

Modelling the molecular regulatory network controlling

mammalian cell cycle is clearly a challenging and long-term enter-

prise. Focusing on the core network controlling the mammalian cell

cycle, our present Boolean model corresponds to a relatively high

level abstraction of our knowledge of the cellular system, which

involves many variants for several of the molecular species

considered (E2F, RB. . .). In this respect, the generation of extensive
functional genomics data sets should prove of great help to delineate

the specific expression and interaction patterns of these variants

(for a pioneering attempt to exploit various kinds of functional

genomic data sets to dynamically characterise the molecular net-

work controlling the cell cycle in yeast, see the recent article by de

Lichtenberg et al., 2005). On the basis of our generic, abstract

model, several extensions or refinements can now be considered,

including the use of multilevel variables wherever biological jus-

tifications can be advanced, further specifications and enrichments

of this model in reference to specific cell types, or yet the inclusion

of additional control modules.

A substantial increase in the sophistication of the logical

models considered will lead to combinatorial problems, e.g., to
identify all attractors or to analyze the trajectories leading to

these attractors. To prepare the ground to deal with such combina-

torial problems, we are exploring different approaches. First, we use

constraint programming to delineate attractors from simple or

composed logical models without computing the whole state tran-

sition graph (Devloo et al., 2003). Next, we have developed and

implemented a set of translations rules enabling the export of

parameterised regulatory graphs into standard or coloured

Petri nets, thereby enabling the use of the various dynamical anal-

ysis tools developed by this lively community (Chaouiya et al., in
press). Finally, we are presently evaluating the application of

temporal logic formalisms (e.g., Computational Tree Logics) to

assess the existence of specific dynamical pathways, or to

encompass specific temporal information (Bernot et al., 2004;

Batt et al., 2005).
Ultimately, more quantitative models are needed to explore fine

grain aspects of the control of the cell cycle, e.g., modulations of the

cycle period or of its amplitude. In this respect, Petri nets constitute

an interesting framework to refine discrete models, leaning on exist-

ing hybrid or stochastic extensions. Alternatively, one may use sets

of differential or stochastic equations, but even in this case, a

preparatory logical analysis should prove useful when dealing

with large and complex regulatory networks.

Table 2. Priority transition classes used to obtain the strongly connected

component shown in the bottom right panel of Figure 2

Rank Type Transitions

1 Asynchronous CycD, Rb, p27, Cdh1, E2F#, CycE#
1 Synchronous CycA#, Cdc20#, Ubc#, CycB#
2 Asynchronous E2F", CycE", CycA", Cdc20"
2 Synchronous Ubc", CycB"

The symbols # and " specify the (decreasing or increasing) direction of the considered

transitions (by default, both directions are considered, e.g., for CycD).
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