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a b s t r a c t

To cope with the increasing complexity of regulatory networks, we define a reduction
method for multi-valued logical models.

Startingwith adetailedmodel,weusedecisiondiagrams to compute reducedmodels by
iteratively ‘‘removing’’ regulatory components. To keep a consistent dynamical behaviour,
the logical rules associatedwith the targets of each removed node are actualised to account
for the (indirect) effects of its regulators.

This construction of reduced models preserves crucial dynamical properties of the
original model, including stable states and more complex attractors. In this respect, the
relationship between the attractor configuration of the originalmodel and those of reduced
models is formally established. We further analyse the issue of attractor reachability.

Finally, we illustrate the flexibility and efficiency of the proposed reduction method
by its application to a multi-valued model of the fly segment polarity network, which is
involved in the control of segmentation during early embryogenesis.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Massive data generation and integration efforts result in the delineation of ever more comprehensive and complex
regulatory networks involved in the control of numerous biological processes. Consequently, currentmodelling and analysis
approaches are reaching their limits in terms of the number and variety of components and interactions that can be
efficiently considered. This is true for quantitative frameworks (e.g., differential or stochastic models), as well as for
qualitative approaches. Indeed, although logical modelling enables the handling of networks comprised of relatively large
numbers of components (see e.g. [1,2]), the size of the state space grows exponentially with the number of regulatory nodes.

Oneway to handle this problem consists in developing compositional approaches to compute the dynamical properties of
comprehensive networks, relying on the knowledge of the properties of simpler sub-systems ormodules. A complementary
approach consists in reducing large systems, by focusing on themost relevant components and redefining their interactions
in order to preserve relevant dynamical properties (e.g. stable states).

Most often, modellers intuitively andmanually reduce regulatory networks to address specific questions. Such empirical
reductions have several drawbacks: (i) the process is error prone and limited to relatively simple cases; (ii) themaintenance
of different versions of a model (complete and reduced) is cumbersome; (iii) storing the sole reduced model leads to the
loss of relevant biological information.

These considerations led us to develop a reliable, automated reduction method in the context of a logical modelling
framework. Established on firmmathematical bases and implemented into the logical modelling software GINsim [3,4], our
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reduction method allows the user to select candidate nodes for reduction and to perform dynamical analyses on reduced
model versions that preserve relevant topological and dynamical properties.

The paper is organised as follows. Section 2 recalls the definitions of logical regulatory graphs and of their associated
state transition graphs. Next, the reduction method is defined in Section 3 and its implementation is presented in Section 4.
Relationships between the dynamical behaviour of the original model and that of the reduced model are delineated in
Section 5. A multi-valued logical model of the segment polarity network is then used to demonstrate the power of the
proposed reduction method in Section 6. The paper ends with conclusions and further prospects.

All models presented in this paper can be opened, edited, simulated, and analysed with GINsim.

2. Logical modelling of regulatory networks

Our modelling approach relies on the generalised logical formalism initially developed by Thomas et al. [5,6,3]. In this
context, a regulatory network and its dynamics are both represented in terms of oriented graphs.

2.1. Logical regulatory graphs

Definition 1. A logical regulatory graph (LRG) is a directed labelled multigraph R = (G, Max, Γ , Θ, K) where,

• G = {g1, . . . , gN} is the set of nodes, representing regulatory components.
• Max : G→ N∗ associates amaximum level Max(gi) =Maxi to node gi. The current level of gi, denoted xi, takes its values

in Di = {0, . . . , Maxi}.
• Γ is the set of arcs, defined as a finite multiset of ordered pairs of elements of G representing regulatory interactions.

If Maxi > 1, gi may have different effects on a component gj, depending on level xi. Hence, the arc connecting gi to
gj may be a multi-arc encompassing different interactions. The multiplicity of the arc (gi, gj) (i.e. the number of its
constitutive interactions), is denotedmi,j (1 ≤ mi,j ≤Maxi). Loops (evenmulti-loops) are allowed: an arc (gi, gi) denotes
an autoregulation of gi.

For each gj ∈ G, Reg(j) denotes the set of its regulators: gi ∈ Reg(j) if and only if (gi, gj) ∈ Γ .
• Θ is a labelling function, which associates a thresholdwith each element of Γ . More precisely, θi,j,k is associated with the

kth interaction between gi and gj (denoted (gi, gj, θi,j,k), k ∈ {1, . . . ,mi,j}), with 1 ≤ θi,j,1 < · · · < θi,j,mi,j ≤ Maxi. This
interaction is active, when xi, the level of its source gi, lies between the threshold of this interaction and that of the next
interaction: θi,j,k ≤ xi < θi,j,k+1 (by convention, θi,j,mi,j+1 =Maxi + 1).
• K = (K1, . . . , KN) defines the logical rules attached to the nodes specifying their behaviours: each Ki is a multi-valued

logical function that gives the target value of gi:

Ki :

∏
gj∈G

Dj

 → {0, . . . , Maxi}.

Fig. 1 illustrates this definition of a logical regulatory graph. In the following, when no confusion is possible, we will use
i to denote gi.

Fig. 1. Example of a logical regulatory graph. Left: graphical representation of a LRG. Blunt arrows depict inhibitionswhile normal arrows depict activations
(this is only a graphical convention since the regulatory effects are defined by the logical functions). The rectangular node g3 is ternary, whereas the other
nodes are Boolean. The thresholds of all interactions are set to 1, except that of (g3, g2), which is set to 2. Right: illustration of the notations of Definition 1.
Examples of logical functions Ki are displayed in Fig. 2 for the same model.

2.2. State transition graphs

We represent the dynamical behaviour of a LRG in the form of a state transition graph, defined as follows.

Definition 2. Given a LRG R = (G, Max, Γ , Θ, K), its associated full state transition graph (STG) E = (S, T ) is a directed
graph, where:
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• S = Πi∈GDi is the state space, a state of the system being a vector x = (xi)i=1,...,N , with xi ∈ Di, ∀i ∈ G,
• T ⊂ S2 is the set of transitions defined as follows: (x, y) ∈ T if and only if ∃i ∈ G such that:

xi ≠ Ki(x),
y = x+∆i(x).ei, where ∆i(x) =

Ki(x)−xi
|Ki(x)−xi|

and ei is the canonical vector in S (eii = 1 and eij = 0, ∀j ∈ G, j ≠ i).

Here ∆i(x) gives the direction of the update of i (increase or decrease). One can also consider a state transition graph
related to an initial (set of) condition(s). It is then a subgraph of the full STG.

When analysing the behaviour of a LRG,wemainly focus on attractors, which represent asymptotic dynamical properties.
Given a STG, attractors are its terminal strongly connected components, classified as:

• stable states: reduced to a unique terminal node,
• cyclic attractors: terminal elementary (oriented) cycles,
• complex attractors: other terminal strongly connected components (i.e. involving intertwined cycles).

Cyclic and complex attractors will be called non-trivial attractors.

2.3. Effective interactions

According to Definition 1, regulatory interactions can be deduced from the logical functionsK .We say that an interaction
(i, j, θ) is effective if there exists a state x ∈ S such that: xi = θ − 1, and Kj(x) ≠ Kj(x+ ei).

In practice, regulatory graphs are often manually constructed, e.g. from interactions documented in the literature, first
defining the sets Γ and Θ . Next, the behaviours of the components are specified (through the logical functions). As a
consequence, a LRG may contain non-effective interactions. Obviously, non-effective interactions can be safely discarded
from the model with no consequence on the resulting dynamics.

Consider now the case of autoregulated nodes. An effective autoregulation (i, i, θ) is said to be functional if the values of
the logical function flank the threshold θ of the autoregulation, i.e. for x ∈ S with xi = θ − 1 and x′ = x + ei, we have:
Ki(x) < θ ≤ Ki(x′) or Ki(x) ≥ θ > Ki(x′) (see [7]).

Note that, in the Boolean case, all effective autoregulations are also functional, but effective non-functional
autoregulations may appear in multi-valued models. In this case, even if the target values are different (Ki(x) ≠ Ki(x′)),
xi tends to the same direction. As a consequence, non-functional autoregulations do not affect the dynamical behaviour
and can thus be removed along with non-effective interactions. The removal of such autoregulations requires to update the
logical functions: if both Ki(x) and Ki(x′) are smaller or equal to xi, set Ki(x) = Ki(x′), otherwise (both are greater than
xi), set Ki(x′) = Ki(x). After these changes, all remaining effective autoregulations are functional.

Hereafter, we consider only LRGs devoid of non-effective interactions and of non-functional autoregulations.

3. Logical regulatory graph reduction

This section presents the principles underlying the reduction of a regulatory graph and defines the resulting model,
called reduced model. In what follows, we consider a reduction consisting of the removal of a single regulatory component.
The generalisation to a reduction encompassing a set of nodes is obtained by iterating single node reductions. However, the
ordering of a sequence of one-node reductions may have an impact on the resulting reduced model (see further discussion
in Section 7).

We aim at defining a reduction method that preserves the salient dynamical properties of the original model. The
underlying principle is already intuitively applied bymodellerswhen theymake regulatory nodes implicit in their networks.
Removing a node basically consists in connecting directly its regulators to its targets. This is done by browsing the possible
values of its regulators and by considering that the removed component is stable (i.e. at its target value). In other words, we
consider the update of the value of the removed component as a fast process, which is performed before anything else.

Following this principle, it is impossible to remove an autoregulated component since it would not have a unique target
value for fixed values of its other regulators. Thus, the removal of an autoregulated component implies additional decisions,
impeding the definition of a systematic procedure. In the following, we will require that autoregulated components should
not be removed.

To properly implement an algorithm producing the reduced model, we need further notations to manipulate the logical
functions. Given a regulatory graph R = (G, Max, Γ , Θ, K) and a node i ∈ G, we denote:

• x{l}i (l ∈ Di) the Boolean variable with value 1 when xi = l, 0 otherwise.
• xSi the Boolean variable that is true if xi ∈ S, false otherwise. Hence xSi is defined by,

xSi ,

l∈S

x{l}i , S ⊆ Di.

Note that x∅i is always false and xDi
i always true.



2210 A. Naldi et al. / Theoretical Computer Science 412 (2011) 2207–2218

• For all v ∈ Di, the logical function Kv
i that gives the conditions under which the target value of node i is v. This function

is defined as follows:

Kv
i =


n=1,...p

Cn
i , (1)

where Cn
i are conjunctive clauses Cn

i =


j∈Reg(i) x
Sj,i,n
j , with Sj,i,n ⊆ Dj. Each clause Cn

i defines a situation (i.e. sets of
combinations of incoming interactions acting upon i) for which the target value of i is v.

In Eq. (1), each clause Cn
i defines a subset of S, D = Πj∈GSj,i,n (with Sj,i,n = Dj, ∀j /∈ Reg(i)), such that for all x ∈ D,

Ki(x) = v. Hence, Eq. (1) defines a set of cubes in the state space S, where the target value of i is v.

Definition 3. Given a LRG R = (G, Max, Γ , Θ, K), the reduced LRG Rr
= (Gr , Maxr , Γ r , Θ r , K r) obtained by removing

a non-autoregulated component r ∈ G is defined as follows:

• Gr
= G \ {r}.

• Maxr : Gr
→ N∗, s.t. ∀i ∈ Gr Maxr(i) =Maxi.

• For all i ∈ Gr , and for all v ∈ Di, the logical functionK rv
i is defined as follows. ConsiderKv

i =


n=1,...p Cn
i , the disjunctive

form of Kv
i , as defined previously. For all n = 1, . . . p (i.e. for each clause Cn

i ), F
rn
i is defined as:

F rn
i =

 
w∈Sr,i,n

Kw
r

 ∧  
j∈Reg(i)\{r}

x
Sj,i,n
j


.

Then K rv
i =


n=1,...p F rn

i .
• Γ r and Θ r are deduced from K r ;

∀i ∈ Gr , j ∈ Gr mr
i,j =

−
v∈[1,Maxi]

11i,j,v,

where 11i,j,v = 1 if there exists x ∈ S such that xi = v− 1 and K r
j (x) ≠ K r

j (x+ ei), 11i,j,v = 0 otherwise. Then (i, j) ∈ Γ r

if mr
i,j > 0 (and the multiplicity of (i, j) in Γ r is given by mr

i,j). Finally, the ordered set of values v such that 11i,j,v = 1
defines the thresholds θ r

i,j,k (k = 1, . . . ,mr
i,j).

The logical function K rv
i is deduced from the logical function Kv

i by replacing, in each clause, literals xSr by the formulae
giving the conditions under which the target value of r is in S (note that this definition may not give K rv

i in a proper
disjunctive form). If Cn

i does not depend on r (i.e. r /∈ Reg(i)) then Sr,i,n = Dr and F rn
i = Cn

i for all n, therefore K rv
i = Kv

i .
Note that in defining Θ r and Γ r from the logical functions, all interactions correspond to effective interactions as defined in
Section 2.3, but there might be non-functional autoregulations (on multi-valued targets of r in R). These can be removed as
explained in Section 2.3.

The set of arcs verifies:

Γ r
⊆ {(i, j) ∈ Gr

× Gr , s.t. (i, r), (r, j) ∈ Γ or (i, j) ∈ Γ }.

4. Implementation

In practice, the construction of the new logical functions is performed using Reduced Ordered Multivalued Decision
Diagrams (ROMDDs or MDDs for short). Decision diagrams are rooted directed acyclic graphs, widely used to represent
logical functions (see e.g. [8,9]). In these diagrams, internal nodes are labelled with decision variables and have one child per
value, while leaves represent the values of the function. Decision variables are ordered: each internal node has a rank and
the sub-diagrams rooted by the children of a node of rank i do not contain internal nodes of rank j ≤ i. In [7], we usedMDDs
to represent the logical functions Ki. In this context, decision variables denote the levels of the components of the model.
For the sake of simplicity, we consider that the ordering of the MDD variables is the same as that of the LRG components.
Given the MDD representation of Ki and a state x, a unique path from the root of the MDD to one of its leaves is defined.
Along this path, the child chosen for each non-terminal node is labelled with the value of the corresponding variable in state
x. The terminal node reached through this path gives the value of Ki(x). Each clause of Kv

i corresponds to a path leading to
a leaf valued v.

To compute the MDD representing K r
i , we define a recursive algorithm, taking as input the MDDs representing Ki

(denoted K in the algorithm) and Kr . The principle is to scan these two MDDs at the same time until a node of rank r
is encountered in K . All its children are then considered until the value of r is determined by reaching a leaf in Kr . The
branch of K corresponding to the value labelling this leaf is then retained and the path from the root of the MDD to the root
of this sub-diagram is reconstructed as the recursion unwinds.
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MDD leaves have a value (denoted K.value below), while internal MDD nodes have a rank (K.rank) and an array
of MaxK.rank + 1 children (K.child, where K.child[i] is the ith child, corresponding to xK.rank = i). The function
CREATE(p, child[]) creates an internal node of rank p with the children specified in the array child[] and takes care
of the usual MDD simplifications. MDD representations of logical functions and the outcome of this algorithm are illustrated
in Fig. 2.
/ / INPUTS :
/ / −K: MDD assoc ia t ed to the component
/ / − r : index o f the removed component
/ / − Kr : MDD assoc ia t ed to r
/ / OUTPUT : modif ied MDD fo r the component
REMOVE(K , r , Kr ) :

i f K i s a l ea f or K. rank > r :
return K / / r has no e f f e c t

i f K. rank = r :
i f Kr . rank = r :

ERROR: r i s autoregulated
else : / / r found , browse Kr and K ’ s ch i l d r en

return FIX (K. ch i ld [ ] ,Kr )

/ / r e cu r s i v e l y bu i ld ch i l d [ ] using K , Kr or
/ / t h e i r ch i ldren , depending on t h e i r rank
p ← minimum of Kr . rank , K. rank
for v ← 0 to Maxp :

i f K. rank = Kr . rank :
chi ld [ v ] ← REMOVE(K. ch i ld [ v ] , r ,Kr . ch i ld [ v ] )

else i f K. rank > Kr . rank :
chi ld [ v ] ← REMOVE(K , r , Kr . ch i ld [ v ] )

else :
chi ld [ v ] ← REMOVE(K. ch i ld [ v ] , r ,Kr )

return CREATE(p , chi ld [ ] )

/ / INPUTS :
/ / − mdd [ ] : array of the sub−MDDs of the component ,
/ / f o r each value o f r
/ / − Kr : sub−MDD assoc ia t ed to r
/ / OUTPUT : new sub−MDD fo r the component
FIX (mdd[ ] ,Kr ) :

i f Kr i s a l ea f : / / f i x ed value o f r
return mdd[Kr . value ]

/ / r e cu r s i v e l y bu i ld the ch i ldren , with a new
/ / ch i l d [ ] f i l l e d according to the ranks in mdd[ ]
p ← minimum of Kr . rank , K. rank , ∀ K ∈ mdd[ ]
for v ← 0 to Maxp :

for i ← 0 to len (mdd)−1:
i f mdd[ i ] . rank = p: / / cons ider the v { th } ch i l d

t_mdd[ i ] ← mdd[ i ] . chi ld [ v ]
else : / / cons ider the current MDD

t_mdd[ i ] ← mdd[ i ]
i f p = Kr . rank :

chi ld [ v ] ← FIX (t_mdd [ ] ,Kr . ch i ld [ v ] )
else :

chi ld [ v ] ← FIX (t_mdd [ ] ,Kr )
return CREATE(p , chi ld [ ] )

5. Dynamics of the reduced model

In this section, the dynamical behaviour of a reduced LRG (as specified in Definition 3) is compared to that of the original
LRG. In particular, we show that the reduction preserves existing attractors and does not add any spurious path.

Let E = (S, T ) be the full state transition graph of R = (G, Max, Γ , Θ, K) and r ∈ G a node not autoregulated. Let
E r
= (Sr , T r) be the full STG of Rr

= (Gr , Maxr , Γ r , Θ r , K r), the LRG obtained after the removal of r from G.
Consider the projection πr : S → Sr such that, ∀i ∈ Gr , ∀x ∈ S, (πr(x))i = xi, and the equivalence relation on S:

∀x, y ∈ S, x ∼r y iff πr(x) = πr(y).
We denote [x]∼r the equivalence class: [x]∼r = {y ∈ S s.t. y ∼r x}. The class [x]∼r contains all states of S that differ only

by their rth component, i.e. the (Maxr + 1) states {xi ∈ S, i = 0, . . . , Maxr}, such that xi ∼r x and xir = i. Because r is not
autoregulated, ∀xi ∈ [x]∼r , Kr(xi) = Kr(x). This implies that:

• (xi, xi+1) ∈ T , for all 0 ≤ i < Kr(x),



2212 A. Naldi et al. / Theoretical Computer Science 412 (2011) 2207–2218

Fig. 2. Reduction in terms of MDDs. Top: the same LRG as in Fig. 1, where g4 (greyed-out) is selected for removal. Logical functions for g1 and g4 are shown
on the right, along with their MDD representations. Bottom: the reduced LRG after removal of g4 , along with the resulting logical function for g1 . In the
MDDs, internal nodes are labelled with the associated variable (xi), whereas leaves represent the value of the logical functions. Children of internal nodes
are ordered from left to right: the leftmost (resp. rightmost) child is the root of the sub-diagram corresponding to the case xi = 0 (resp. xi =Maxi).

• (xi, xi−1) ∈ T , for all Kr(x) < i ≤Maxr ,
• (xKr (x), xi) /∈ T , for all 0 ≤ i ≤Maxr .

Hence, for all x ∈ S, there exists a path in S from x to xKr (x) that is the representative state of [x]∼r .
Definition 4. A state x ∈ S is the representative state of an equivalence class for ∼r iff xr = Kr(x) (with r a non-
autoregulated component).

Note that when r is not autoregulated, the representative state does exist and is unique. We can then define the retrieval
function sr : Sr

→ S such that, ∀z ∈ Sr ,

(sr(z))i = zi, for all i ∈ G \ {r},
(sr(z))r = Kr(x), with x such that πr(x) = z.

The state sr(z) is the representative state of the equivalence class whose states are projected on z (see Fig. 3). On this
basis, we can introduce an alternative definition of the logical functions in the reduced LRG: ∀i ∈ Gr , K r

i : Sr
→ Di is

defined as K r
i (z) = Ki(sr(z)). Note that if (r, i) ∉ Γ (i.e. r is not a regulator of i), K r

i (πr(x)) = Ki(x).

Fig. 3. Dynamical behaviour of the reduced model given in Fig. 2 bottom, before and after the removal of the ternary node g3 . Left: State transition graph
(STG), partitioned into four equivalence classes. Each equivalence class contains 3 states differing by the value of g3; its representative state is greyed
out and internal transitions are dashed. Right: STG of the reduced model, each state corresponding to an equivalence class of the original STG. After the
reduction, the stable state 102 is projected on 10 and all transitions are preserved except the one from the second equivalence class to the third one. This
results in the isolation of the non-terminal strongly connected component involving states of the first two equivalence classes of the original STG, hence
generating the attractor (01, 00).

Remark 1. It follows from their definitions that functions πr and sr verify:
1. πr ◦ sr is the identity function.
2. For any x ∈ S, (sr ◦ πr(x)) ∼r x.
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3. If x ∈ S is a representative state, then sr ◦ πr(x) = x.
4. For any z ∈ Sr , K r(z) = πr(K(sr(z))). Indeed, ∀x ∈ S, ∀i ∈ Gr , K r

i (πr(x)) = Ki(sr ◦ πr(x)).

The following lemma establishes the relationships between transitions in E and E r .

Lemma 1. 1. Let z, z ′ ∈ Sr .

(z, z ′) ∈ T r
=⇒ ∃x ∈ S s.t. πr(x) = z ′ and (sr(z), x) ∈ T .

2. Let x, y ∈ S. If x is a representative state, then

(x, y) ∈ T =⇒ (πr(x), πr(y)) ∈ T r .

Proof. Recall the notation ∆i(x) =
Ki(x)−xi
|Ki(x)−xi|

, with x ∈ S such that Ki(x) ≠ xi. For z ∈ Sr s.t. zi ≠ K r
i (z), we similarly

denote:

∆r
i (z)

△
=

K r
i (z)− zi

|K r
i (z)− zi|

=
Ki(sr(z))− (sr(z))i
|Ki(sr(z))− (sr(z))i|

= ∆i(sr(z)).

1. Consider z, z ′ ∈ Sr such that (z, z ′) ∈ T r . Then ∃i ≠ r s.t. K r
i (z) ≠ zi, and z ′ = z + ∆r

i (z) e
i. By definition, K r

i (z) =
Ki(sr(z)) ≠ (sr(z))i = zi. This implies that (sr(z), x) ∈ T with x ∈ S and x = sr(z)+∆i(sr(z)) ei, and then πr(x) = z ′.

2. Consider x, y ∈ S such that Kr(x) = xr . The hypothesis (x, y) ∈ T implies that ∃i ∈ G, i ≠ r s.t. Ki(x) ≠ xi, and
y = x+∆i(x) ei.

WehaveK r
i (πr(x)) = Ki(x) (since x is a representative state), and xi = (πr(x))i, since i ≠ r . So,K r

i (πr(x)) ≠ (πr(x))i,
and then ∃z ∈ Sr s.t. (πr(x), z) ∈ T r , with

z = πr(x)+∆r
i (πr(x)) ei = πr(x)+∆i(sr ◦ πr(x)) ei = πr(y). �

The first item of Lemma 1 states that any transition in T r corresponds to at least one transition in T . Clearly, the reverse
is not true. The second item of the lemma gives a condition under which transitions are preserved from T to T r . Of course,
it is important to know which transitions are lost through the reduction.

Definition 5. The reduction preserves a transition (x, y) ∈ T if (πr(x), πr(y)) ∈ T r , orπr(x) = πr(y). The reduction preserves
a path (s1, . . . , sn) ∈ E if all its transitions are preserved.

In otherwords, a path (s1, . . . , sn) inE is preserved if the reduction preserves the transitions between equivalence classes,
in the required order.

The following property characterises the transitions that are not preserved by the reduction.

Property 1. A transition (x, y) ∈ T is not preserved by the reduction if and only if the three following conditions are satisfied:

1. x is not a representative state,
2. y ∉ [x]∼r (⇒ ∃i ≠ r s.t. yi ≠ xi),
3. ∆i(x) ≠ ∆i(sr ◦ πr(x)) .

The last condition means that there is no call for updating i in the same direction in state sr ◦ πr(x).

Proof. Consider a transition (x, y) ∈ T , which satisfies the three conditions. Suppose that (x, y) is preserved by the
reduction, then (πr(x), πr(y)) ∈ T r (the case πr(x) = πr(y) is not possible because of the second condition). This means
that there exists j ≠ r s.t. (πr(x))j ≠ (πr(y))j, and (πr(x))k = (πr(y))k for any k ≠ j. With Condition 2 and by definition of
πr , we deduce that j = i. Moreover, we know that:

πr(y) = πr(x)+∆r
i (πr(x)) ei = πr(x)+∆i(sr ◦ πr(x)) ei.

Finally, y = x+∆i(x) ei, and, as yi = (πr(y))i, we have ∆i(x) = ∆i(sr ◦ πr(x)). This contradicts Condition 3. Hence, (x, y) is
not preserved by the reduction.

Conversely, let (x, y) ∈ T be a transition not preserved by the reduction.

• Condition 1 is satisfied by the second item of Lemma 1.
• Condition 2 is satisfied because y ∈ [x]∼r ⇒ πr(x) = πr(y) ⇒ (x, y) preserved, hence a contradiction.
• We know that y = x+∆i(x) ei. As K r(πr(x)) = πr(K(sr ◦ πr(x))) (cf. Remark 1),

K r
i (πr(x)) = (πr(K(sr ◦ πr(x))))i = Ki(sr ◦ πr(x))

≠ xi = (πr(x))i.

Hence, there exists z ∈ Sr s.t. (πr(x), z) ∈ T r with

zi = πr(x)+∆r
i (πr(x)) ei

= πr(x)+∆i(sr ◦ πr(x)) ei = πr(x)+∆i(x) ei.

Consequently, πr(y) = z and (x, y) is preserved, hence a contradiction. �
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Given C , a set of states in S, we denote πr(C)
△
= {πr(x), x ∈ C}. Given C ′, a set of states in Sr , we denote sr(C ′)

△
=

{sr(z), z ∈ C ′}. Note that πr(C) may contain less elements than C , and that sr(C ′) contains only representative states. The
following results relate attractors in E and E r .

Theorem 1. Consider a LRG R = (G, Max, Γ , Θ, K) and Rr the reduced LRG. Let E (resp. E r ) be the full STG of R (resp. of
Rr ), then:

1. Stable states in E and E r verify:
• x stable state in E =⇒ x is a representative state andπr(x) stable state in E r . Furthermore no other stable state is projected

on πr(x),
• z stable state in E r

=⇒ sr(z) stable state in E .
Hence, the number of stable states is conserved by the reduction.

2. If (s1, . . . sn) is a cyclic attractor in E , then (πr(s1), . . . πr(sn)) is a cyclic attractor in E r .
3. If C is a complex attractor in E , z ∈ πr(C) and (z, z ′) ∈ T r , then z ′ ∈ πr(C). As a consequence, πr(C) contains at least one

non-trivial attractor in E r .

Proof. In what follows, we use K(x) ∈ S to denote (Ki(x))i∈G.

1. Let x ∈ S be a stable state: ∀i ∈ G, Ki(x) = xi, hence x is a representative state. Then, K r(πr(x)) = πr(K(s ◦ πr(x))) =
πr(x). Hence, πr(x) is a stable state in Sr .

Let z ∈ Sr be a stable state. For all i ∈ Gr , we have K r
i (z) = zi. Consequently, for all i ∈ Gr , Ki(sr(z)) = (sr(z))i, and,

by definition of sr , Kr(sr(z)) = (sr(z))r .
2. A cyclic attractor (s1, . . . sn) in E is an elementary cycle such that ∀i ∈ {1, . . . , n}, si has a unique successor si+1. If si is a

representative state, then πr(si) has a unique successor πr(si+1) in T r . Otherwise, si ∼r si+1 (as the successor is unique).
Hence, the path (πr(s1), . . . πr(sn)) exists in T r and eachπr(si) has a unique successor. Thus (πr(s1), . . . πr(sn)) is a cyclic
attractor in Gr .

3. Given C , a complex attractor in E . For all z ∈ Sr , if z ∉ πr(C) then z is not reachable from any state of πr(C). Suppose
that there exist x ∈ C and z ∈ Sr such that (πr(x), z) ∈ T r and z ∉ πr(C). Then there exists y ∈ S such that πr(y) = z
and (s ◦ πr(x), y) ∈ T (by Lemma 1). Moreover, there exists a path from x to s ◦ πr(x) (Remark 1), so s ◦ πr(x) ∈ C (C is
a terminal strongly connected component). This implies that y ∈ C , and z = πr(y) ∈ πr(C), which is a contradiction. As
a consequence, all trajectories starting in πr(C), projection of the complex attractor C , are trapped in πr(C). Thus πr(C)
contains at least one non-trivial attractor, recalling that stable states are conserved, while C is devoid of stable state. �

Theorem 1 characterises the dynamical properties conserved by the reduction. Going further, it is possible to identify
the situations leading to the generation of additional non-trivial attractors. A non-trivial attractor in the reduced STG
corresponds to a (part of a) strongly connected component of the original STG. This SCC is itself a non-trivial attractor or
involves outgoing transitions all in conflictwith transitions concerning the removed component. In otherwords,we can fully
characterise the set of states in the original STG giving rise to a non-trivial attractor in the reduced dynamics. Interestingly,
this set corresponds to transient oscillatory behaviour from which the system cannot escape provided that updates of the
removed component are always faster than other concurrent changes.

Theorem 2. Given a non-trivial attractor C r in E r ,

1. sr(C r) = {sr(z), z ∈ C r
} is part of a strongly connected component C in E .

2. Let C ′ = {x ∈ E , s.t. πr(x) ∈ C r
} (= ∪x∈sr (C r )[x]∼r), the set of states whose projections are in C r . Suppose (x, y) ∈ T , such

that x ∈ C ′ and y /∈ C ′, then (x, y) is not preserved.
3. Suppose (x, y) ∈ T , such that x ∈ sr(C r) and y /∈ C ′ ∩ C, then (x, y) is not preserved.

Proof. Consider C r a non-trivial attractor in E r , then C r is a strongly connected component.

1. Let x, y ∈ sr(C r); then x = sr(z) and y = sr(z ′), z, z ′ ∈ C r . Let z0 = z, z1, z2, . . . , z l = z ′ a path from z to z ′. For all
i ∈ {1, . . . l − 1}, (z i, z i+1) ∈ T r

⇒ ∃u ∈ S such that (sr(z i), u) ∈ T and πr(u) = z i+1. Moreover, we know that there
exists a path from u to sr ◦ πr(u) = sr(z i+1). Hence, there is a path from x = sr(z) to y.

2. Let (x, y) ∈ T , such that x ∈ C ′ and y /∈ C ′. Suppose that (x, y) is preserved, then either πr(x) = πr(y) or (πr(x),
πr(y)) ∈ T r . Both cases imply πr(y) ∈ C r , thus y ∈ C ′, which is a contradiction.

3. Let (x, y) ∈ T , such that x ∈ sr(C r) and y /∈ C ′ ∩ C . Suppose that (x, y) is preserved, then either πr(x) = πr(y) or
(πr(x), πr(y)) ∈ T r .
• πr(x) = πr(y) is not possible because it would imply that y ∼r x and since x is a representative state (x ∈r (C r)), it is

stable for r and cannot be the source of a transition leading to a state in its equivalence class.
• if (πr(x), πr(y)) ∈ T r , thus πr(y) ∈ C r and y ∈ C ′. Furthermore, sr ◦ πr(y) ∈ sr(C r) ⊂ C . A path exists from x ∈ C to

y (since (x, y) ∈ T ) and from y to sr ◦ πr(y) ∈ C (by item 2 of Remark 1), thus y ∈ C , which is a contradiction. �
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6. Application to the analysis of the dynamics of a logical model for Drosophila segment polarity network

We demonstrate the power and flexibility of our reduction method through its application to the segment polarity
network, which plays a key role in the segmentation of the fly embryo. This system has been thoroughly analysed by
developmental geneticists and has been already modelled using continuous [10–12] and logical approaches [13–15].
However, all these studies involved important simplifications of the network, particularly so as a proper modelling of its
behaviour requires the chaining of several identical networks to account for inter-cellular interactions through Wingless
(Wg) and Hedgehog (Hh) signalling. Describing the most complete model to date, [15] had to discard various components
known to play important roles in Wg and Hh signalling to keep dynamical simulations and analyses computationally
tractable for up to six cells. Based on this work, we propose a detailed logical model of the segment polarity network, taking
into account six additional components (Arm, Cos2, Fu, SuFu, Smo and Zw3). The resulting regulatory graph encompasses
18 components (among which 10 are associated with Boolean variables and 8 to ternary variables) and 31 regulatory
interactions (left part of Fig. 4).

Fig. 4. Logical model of the segment polarity network for two cells, based on [15]. Ellipsoid and rectangular nodes denote Boolean and ternary components,
respectively. The two cellular networks have been properly connected to take into account Wg and Hh diffusion, as well as Hh sequestration by Ptc,
as in [16]. This figure illustrates a partially reduced model: the anterior cell contains the extended version of the model, while the right part has been
reduced. Dashed arrows denote indirect interactions resulting from this reduction. Greyed-out components in the anterior cell are marked for reduction
(and reduced in the posterior cell), while greyed-out components in the posterior cell are candidates for further reduction.

In order to model the intercellular interactions involved in the formation of segment boundaries, we connect neighbour-
ing cells (along the anterior-posterior axis) through Wg and Hh signalling. Wg is known to bind its receptor, Frizzled (Fz),
only at very short range, amounting here to neighbouring cells. This can be represented by positive arcs linking eachWgnode
to Fz nodes of neighbouring cells. In contrast, Hh is able to reach more distant cells, but can be sequestered by its receptor
Patched (Ptc). Similar interactions have been modelled in [16] in terms of positive arcs between Hh nodes in neighbouring
cells (diffusion) and negative arcs from Ptc onto the Hh node of neighbouring cells (sequestering). The resulting intercellular
model is then reduced before performing analysis (Fig. 4 illustrates the intercellular network after reducing only one of two
connected cells).

The reduction method described above can be advantageously applied to ease the identification of all attractors of such
intercellular models (Sánchez et al. considered six cells [15]). The modeller can select the sets of nodes to discard from
the network, depending on biological considerations (e.g. different time scales, specific mutations, etc.). In a first step, it
is reasonable to conserve transcription factors and components involved in intercellular communications: Wg, Hh and
their receptors (Fz and Ptc). However, since the transcription factor Cubitus interruptus is represented by three nodes
here (full length immature Ci protein, activator Ci-act and repressor Ci-rep forms), we choose to retain only the two nodes
corresponding to active regulatory forms. These choices correspond to the removal of the greyed-out components in the left
part of Fig. 4.

The reduced model involves half of the nodes of the original one, which amounts to a much higher reduction of the
number of possible states, as this grows exponentially with the number of regulatory nodes. The resulting regulatory graph
(Fig. 4, right) remains easy to grasp as it reasonably unfolds the intra-cellular and inter-cellular regulatory pathways. As we
shall see, this logical model can be further reduced to facilitate analyses encompassing more cells.

For proper logical rules (cf. [15] and supplementary material), one can check that the detailed and the reduced two-
cells models have exactly the same number of stables states (as predicted by Theorem 1). These multi-cellular stable states
combine three types of cellular states: a Wg expressing state (denoted W), an En expressing state (E), and a trivial state
(T) expressing neither Wg, nor En. The three stable states found for the two connected cells correspond to the TT, WE and
EW cell combinations reported by Sánchez et al. [15]. All three stable states are reachable from biologically relevant initial
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Table 1
Dynamical characteristics of different reduced models derived from that of Fig. 4
(involving 2× 9 nodes after applying the same reduction to both cells). The number
of reachable states decreases drastically with the number of considered nodes. Note
that the three stable states remain reachable for all reductions listed apart from the
last one (removal of Slp).

LRG size Removed components # reached states Reached stable states

2× 9 – >106 TT, WE, EW
2× 7 Fz, Ptc 12476 TT, WE, EW
2× 6 Fz, Ptc, Nkd 1625 TT, WE, EW
2× 8 Slp 11350 TT, WE

conditions (significant amounts of Wg and Slp in the anterior cell, significant amounts of En in the posterior cell), provided
as an outcome of the activity of the pair-rule system, cf. [17,15]. However, the size of the corresponding state transition
graph still impedes detailed dynamical analyses (see Table 1).

As shown in Table 1, the removal of Fz, Ptc and Nkd drastically reduces the number of reached states without changing
the reachability of the three stable states from the considered initial state. However, the sole removal of Slp impedes the
reachability of the stable state with inverted Wg and En expressing cells. It also suppresses the functionality contexts of all
negative circuits [7,15], implying that the state transition graph does not contain any cyclic attractor. Indeed, after further
reduction to three nodes per cell (Wg, En and Hh), wewere able to check the absence of non-trivial attractors in the full STG.
As the reduction cannot delete existing non-trivial attractors (see Theorem 1), this implies that all attractors of the original
model are stable states. This could not have been checked on the original full STG, which contains 220

× 316
≃ 45 × 1012

states.

7. Discussion and prospects

We have defined a reduction method that can be applied to multi-valued logical regulatory graphs while preserving
important dynamical properties. In particular, all attractors of the original dynamics have a counterpart in the dynamics of
the reduced model. Furthermore, trajectories in the reduced model can be formally related to trajectories in the original
one. This enables one to infer the existence of paths in the dynamics of a detailed model whenever it is possible to show
(by simulation and graph analysis) that paths exist between the corresponding states in a reduced version of the model.
However, the reverse is not true. Indeed, a reduction can lead to the loss of reachability properties. Whenever several
components are called to asynchronously update their values in a given state, the reduction of one of these components
amounts to considering that it is ‘‘faster’’ than the other ones. Indeed, the logical functions are modified by the reduction
considering the target level of the reduced component in any given state. This leads to the possible exclusion of some
transitions in the reduced STG, as established by Property 1. The resulting dynamical behaviour can be related to that
obtained by applying specific priority classes [18]. Yet, the precise characterisation of this relationship requires further
work.

Reduction strategies have long been considered to alleviate model analyses of large discrete event systems, from
homomorphisms and bisimulations of transitions systems (e.g. [19]) to reduction techniques for Petri nets (e.g. [20–22]).
These reductions also amount to lowering the size of the model (i.e. number of places or transitions), yet preserving the
salient behavioural properties. Since logical models of regulatory networks can be represented as Petri nets [23], Petri net
based methods could further be used to complement the reduction method described here. Complementary approaches
in terms of formal abstractions have been proposed, including discrete abstractions of hybrid automata [24], or even the
derivation of abstraction relationships between stochastic, discrete and Boolean semantics [25].

One particular feature of the reduction method defined here is that the removal of (functional) auto-regulatory
components is forbidden. This rule is related to previous work on the dynamical roles of the regulatory circuits. Indeed,
it has been recently proven in the discrete framework that positive regulatory circuits are necessary to generate multiple
attractors, whereas negative circuits are necessary to generate cyclic attractors (cf. [26] and references therein). At least in
the discrete framework, these properties depend only on the sign of the regulatory circuit, i.e. on the product of the signs of
the involved interactions. From a qualitative dynamical point of view, it is thus possible to reduce the number of components
of a circuit down to a single autoregulated component, while keeping the corresponding property, as long as we conserve
the sign of the circuit (along with some functionality constraints).

Our formal presentation of the reduction method mainly focuses on the removal of a single component. However, this
process can be iterated to remove several components. This raises the question of the impact of the order inwhich reductions
are performed. Indeed, it can happen that a reduction of several components can be performed in one order and not in
another one. This is because, in the course of multiple reductions, a regulatory circuit might be shortened up to a functional
autoregulation (cf. Section 2.3), thus preventing further reductions. In contrast, the removal of a component might suppress
an autoregulation on one of its targets, which can then be candidate to reduction. Considering the reduction of a set of
components, when several orders are feasible, the obtained reduced logical regulatory graphs are equal and the dynamics
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should thus be identical. Ifwe aimat removing asmany components as possible, the order of the removals of the components
may be crucial. Further work is needed to properly define optimal or maximal reductions for the general case.

The worst case complexity of the algorithm for the reduction of a node r that regulates k targets is in O(md), where m is
the highest number of levels of the involved components and d is the depth of the MDDs representing the revised logical
functions associated with the target nodes. In most cases,m ≤ 3 and d ≤ 5.

Applying our reductionmethod to a detailedmodel of the segment polarity network,wewere able to show the absence of
non-trivial attractors in a state transition graph too large to be efficiently analysed (the complete two cells model generates
roughly 45 ∗ 1012 states, while the reduced model state space has 15 ∗ 106 states). However, even if the reduction method
dramatically reduces the size of the state transition graphs, it could be combined with other methods. For example, rather
than considering monolithic models, a promising strategy would rely on the intrinsic modularity of these interconnected
intracellular networks, developing compositional analyses.

The proposed reduction method offers a great flexibility to the modeller. Biological arguments (e.g. information on
relative reaction speeds) can be used to select sets of nodes for consistent model reduction. In the course of the dynamical
analysis of complex networks (e.g.multicellular networks), alternative reductions can be performed for specific aims, e.g. to
ease the identification of all attractors or check their reachability from specific initial states.

To ease the maintenance of a detailed model along with its reduced versions, a novel GINsim release allows the user to
define and record various reductions for the same reference model. This reduction method could further be combined with
algorithmic methods enabling the compression and analysis of large state transition graphs ([27] and references therein), or
even with model checking techniques ([28] and references therein), thereby facilitating the analysis of yet larger and more
complex networks.

Supplementary materials
GINsim can be downloaded from http://gin.univ-mrs.fr/GINsim. The models are available in themodel repository section

of the same website.
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