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Abstract. Considering the logical (Boolean or multi-valued) asyn-
chronous framework, we delineate a reduction strategy for large signalling
and regulatory networks. Consequently, focusing on the core network
that drives the whole dynamics, we can check which attractors are reach-
able from given initial conditions, under fixed or varying environmental
conditions.

More specifically, the dynamics of logical models are represented by
(asynchronous) state transition graphs that grow exponentially with the
number of model components. We introduce adequate reduction meth-
ods (preserving reachability of the attractors) and proceed with model-
checking approaches.

Input nodes (that generally represent receptors) and output nodes
(that constitute readouts of network behaviours) are each specifically
processed to reduce the state space. The proposed approach is made
available within GINsim, our software dedicated to the definition and
analysis of logical models. The new GINsim functionalities consist in a
proper reduction of output components, as well as the corresponding
symbolic encoding of logical models for the NuSMV model checker. This
encoding also includes a reduction over input components (transferring
their values from states to transitions labels). Finally, we demonstrate the
interest of the proposed methods through their application to a published
large scale model of the signalling pathway involved in T cell activation.

Keywords: Qualitative modelling, Logical modelling, Model checking,
Regulatory networks, Signalling networks.

1 Introduction

As ever larger signalling and regulatory maps are being identified, there is a grow-
ing need for efficient computational means to analyse the behaviours induced by
these networks. Among the numerous existing modelling approaches (see e.g., re-
views [4/18]]), the logical framework provides a convenient way to convey current
qualitative knowledge and proved useful to study a significant number of pub-
lished models. Here, we rely on the formalism initially proposed by R. Thomas
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and co-workers [20], where discrete (Boolean or multi-valued) dynamics are rep-
resented as (asynchronous) state transition graphs (STG). For such models, the
number of states grows exponentially with the number of regulatory compo-
nents. We propose to tackle this combinatorial explosion, by applying adequate
reduction methods and by proceeding with model-checking approaches.

This manuscript focuses on signalling-regulatory networks that encompass
large numbers of input components (denoting external stimuli) and output
components (used as readouts of network behaviours). In concrete biological
networks, input components vary, often being externally controlled (e.g., light
availability, presence of nutrients, heat shock, etc.). It is thus relevant to con-
sider that input components freely vary (i.e., are under no specific control) and
to slightly extend the current definition of logical regulatory graphs. Then, the
STG encompasses transitions between all the states that share the same values
for internal components, denoting the sole changes of the input components.

For these signalling-regulatory networks, our rationale is to reduce the com-
plexity of the corresponding models, while ensuring the full preservation of the
properties of interest. These relate to asymptotical behaviours embodied in ter-
minal strongly components of the state transition graphs (referred to as attrac-
tors) as well as the reachability of those attractors from given initial conditions.
Moreover, we analyse the possible switches between attractors, upon variations
of the input components.

The reduction method presented in [I1] possibly leads to the loss of some
trajectories. Here, we show that when applied to output cascades, this reduction
has no impact on reachability properties. However, it cannot be applied to input
cascades if attractor reachability is to be preserved. Hence, we propose another
strategy to lessen the size of the state space, by transferring the values of input
nodes to transition labels, thus reducing the state space by at least 2™ (for n
input Boolean nodes). Furthermore, we discuss the nature of stable states in
these labelled state transition graphs, in the case of varying input components.
Finally, we resort to model-checking to analyse these complex dynamics.

We demonstrate the potential of this approach on the large scale Boolean model
that accounts for T cell activation as defined by Saez-Rodriguez et al. [16].

In [I], the authors introduce a “decimation algorithm“, which amounts to re-
moving variables that have no impact on the long-term behaviour. While similar
to ours, their method is valid for deterministic Boolean networks (with syn-
chronous updates). Indeed, for such models, the reduction method presented in
[11] has clearly different impacts on the dynamics. Considering asynchronous
Boolean dynamics, Saadatpour et al. recently proposed a reduction strategy for
large signalling transduction networks, relying on the fact that input cascades
stabilise under constant input conditions [15]. Here, we aim at going further,
first by ensuring that all the asynchronous dynamics is preserved (reducing only
output cascades), second by considering varying input conditions.

The paper is organised as follows. First, we recall the basics of the logical
formalism and of the model reduction method in Section[2l Section Blpresents the
method that allows us to focus on the core network, reducing the output cascades
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and projecting the dynamics over the input components. Implementation aspects
are discussed in Section @l The proposed method is then applied to further
analyse a published model of the signalling pathway involved in T cell activation
[16]. The paper ends with some conclusions and prospects.

2 Background

In this section, we recapitulate (and extend) essential definitions concerning the
logical formalism. Then, we recall the basics of the model reduction as defined
in [11].

Definition 1. A logical signalling-regulatory graph (LSRG) R = (G,K) is de-
fined by:

— G a set of n components partitioned into three subsets: T = {g;}j=1..n,,
the set of input components, P = {gj}j:(m-i-l)...(n,--i-n,,); the set of proper
components, and O = {gj}j:(n73+np+l)...n) the set of output components.

— Discrete variables denoting the levels of the components: Vg,v; € D; =
{0... M;}. Then v = (v;)4,eg is astate and S =[], g D; is the state space.

— Logical functions defining the behaviours of the components:
- For g; e PUQO, K; is a multi-valued function that specifies the (unique)
target value K;(v) of gi, given the current state v: K; : S — D;.

- Input components g; € I are either set to constant values in their do-

mains (K;: S — D;):
Yo e S, K;i(v) = v,
or freely vary (K; : S — D; UD?):

if v =0, Ki(v) =v; +1,
Yo € S, ifvi:Mi7 K:i(’U)Z’UZ'—L
if M; >1 and 0 < v; < M, K:i(’l}):(’l)i-i-l,vi—l).

This definition slightly extends the classical definition of Logical Regulatory
Graphs as introduced in e.g., [11], since it specifically distinguishes input com-
ponents, which account for environmental conditions and are either strictly con-
trolled (i.e., kept constant to their current values) or not (i.e., freely vary).

The partition of G, the set of regulatory components, will be useful in what
follows. Note however that it could be partially derived from the logical functions
K. Indeed, given a proper or output component g; € P U O, one can define
the set of nodes that influence g¢;, denoted Reg(g;): Ygr € G, gr € Reg(g;) iff
Jv € §,Ki(v) # Ki(v'), where vy = v’y £1 and v; = v}, Vj # k. If gx € Reg(g:),
then there is an interaction from g to g; and its sign can also be deduced from
the logical function K; (see e.g., [I1] for further detail). Moreover, we have

g€ O & Ag €G,g € Reg(g),
g € P < Reg(g) #0 and 3¢’ € G, g € Reg(g'),
gL ©gg¢PUO.
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2.1 State Transition Graphs Representing LSRGs Dynamics

The behaviours of LSRGs are represented as State Transition Graphs, defined
below. For proper and output components, we denote A;(v) the “direction® of
the update of g; in state v:

A . 0 if K1 (1)) = VU,
(@) = 7'?83:24 otherwise.

Definition 2. Given a LSRG R = (G,K), its full, asynchronous State Transi-
tion Graph (STG) is a graph E(R) = (S, T) where:

— the nodes are the states in S,
— the arcs denote transitions between states,

- transitions over proper and output components are such that:

(v,w) €T C & =
dg; € PUO s.t. Ki(v) # i, w; = v; + A;(v) and w; = v; V5 # 1,

- transitions over a varying input component g; are as follows (depending
on v; and M;, there is a transition increasing v;, a transition decreasing
v; or both):

(v,w) € T, with w; =v; + 1, wj = v; Vj # i, <= v; < M,,
(v,w) € T, with w; =v; — 1, w; =v;Vj #i <= v; > 0.

We denote Eqste(R) (or simply Ecsie ), the STG where input components are kept
constant, and &, the STG where input components freely vary. The STG E.gte
is made of at least as many disconnected sub-graphs as the number of fixed
input combinations (see Section B3] and Figure[)). In &, these sub-graphs are
connected through transitions over varying inputs, connecting all states that
differ only in their values of input components.

Note that one can consider a sub-graph of the full STG, by defining initial
state(s). This graph can be constructed by visiting all successors of the initial
state(s) and proceeding with the exploration until no new state is encountered.

The main relevant properties to be analysed relate to LSRGs asymptotical
behaviours that are called attractors. In STGs, they correspond to terminal
Strongly Connected Components (SCCs). When input components are main-
tained constant, we have:

— Stable states (i.e., terminal SCCs reduced to a unique state);

— Complez attractors (i.e., terminal SCCs encompassing at least two states).
Within these complex attractors, we can further distinguish elementary ter-
mianal cycles, in which all states have a unique outgoing transition.

In &,4r, there is no stable state (as defined above) and we need to revisit the
definition of these attractors (see Figure [[land Section [3.3)).
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Beside the identification of attractors, it is often important to check reachability
properties, e.g., which attractors are reachable from an initial condition, what are
the properties of all trajectories leading to those reachable attractors, etc.

As already mentioned, we face a combinatorial explosion of the number of
states that hampers efficient analysis of STGs. The consideration of priority
classes, based on well-founded assumptions, amounts to choose between concur-
rent transitions and thus constitutes a convenient way of reducing the size of a
STG (see [5]). Another approach, yet related, consists in reducing the size of the
model (the number of its components). The method is briefly described below,
a full description being available in [IT].

2.2 Model Reduction

The reduction method presented in [I1] consists in iteratively taking components
off the model, which is adequately modified. The intuitive idea is to transfer
the role of the reduced component to its regulators. Importantly, reduction of
auto-regulated components is not allowed, to ensure that essential dynamical
properties are preserved. Indeed, regulatory circuits are known to be at the origin
of multi-stability (for positive circuits) and of stable oscillations (for negative
circuits) [I9]. In the same way, with our extended definition of logical models,
where input components may freely vary, we will not allow reduction of these
input nodes.

More precisely, taking a (non-autoregulated) component g, off a LSRG R =
(G,K) leads to a new LSRG R" = (G",K") with a reduced state space denoted
8" =11, egr=g\ (g1 Di- It is useful to define:

— The projection 7" : § — 8" such that Yv € S, Vg; # g, 7" (v); = vy;

— The “retrieval “ function s” : 8™ — S such that Vo € §",Vg; # g., s"(z); = ;
and s"(z), = K, (v), for v € § such that 7" (v) = . We say that s"(z) is the
representative state of the equivalence class [s"(z)]~, containing the states
that are projected on x € 8" (all these states differ solely in their values for
the component g, ).

Furthermore, the reduction of g, consists in modifying the logical functions (more
precisely, the functions of those components g; such that g, € Reg(g;)):

Ve eS", Kl (z) = K;(s"(2)).

Note that excluding auto-regulated and input components as candidates for
reduction ensures the existence and uniqueness of the representative state. We
recapitulate a number of properties concerning the dynamical behaviour of a
reduced LSRG (details and proofs can be found in [I1]). Let consider R = (G, K)
a LSRG and R" = (G",K") its reduced version (taking off ¢”). Let denote
E=(S8,T)and & = (8", T") their STGs. We have,

1. Yu,v € S, if u is a representative state (u, = K,-(u)), then: (u,v) € T =
(7" (u), 7" (v)) € T™;
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Fig. 1. (A) Simple example of a (Boolean) LSRG, with two proper components, one in-
put and one output, and the associated logical functions. (B) The corresponding (full)
STG Ecste, when the input component gs is kept constant (states denote the values of go,
g1, g2 and g3 in this order). There are 3 stable states. (C) The (full) STG Eyar, consid-
ering a free variation of g3. (D) The labelled STG ENos}, resulting from the projection
over g3 and the labelling of the transitions with its values (see Section [3.3]).

2. atransition (u,v) € T is not preserved (i.e., (7" (u), 7" (v)) € T" and 7" (u) #
7" (v)) iff the following conditions are fulfilled:

— u is not a representative state (u, # K, (u)),

— 3i # r, v; # uy, i.e., u and v differ on their values for a component g;,

which is not g,, hence (u,v) € T is a transition over g;,

— and A;(u) # Ai(s"(7"(u))) (the updating call on g; in state u is not

preserved in the representative state s” (7" (u)));

3. Stable states in £ are conserved in £": u stable in £ implies that u is a

representative state and 7" (u) is stable. Moreover, if z is stable in £”, then

s"(z) is stable in &;
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4. If (uq ... up) is a elementary terminal cycle in € then (7" (u1)...7"(up)) is a
elementary terminal cycle in £7;

5. If C € S is a complex attractor in &, 7" (C) contains at least one complex
attractor in £".

Summarising, stable states and elementary attractive cycles are preserved by the
reduction (they only occur for constant input components). Complex attractors
may appear as the result of an SCC disconnection provoked by the loss of tran-
sitions. Note that, all transitions over varying input components are preserved
in 7" (since, for any state v € S, they equally exist in 7 for all states in the
equivalence class [v]).

3 Focusing on Core Networks in LSRGs

In this section, based on topological considerations, we define three set of compo-
nents, each playing a distinct role in the dynamics of a LSRG. We then describe
the reduction of output cascades and projection over input components as rele-
vant means to reduce the size of the dynamics, yet keeping all its properties.

3.1 Splitting the Set of Components into Three Relevant Subsets

Given an LSRG R = (G, K), its set of components is defined as the union of the
set of inputs Z, the set of output O and the set of proper components P. Here,
still on topological considerations, we define another partition of G in three sets
that play different role in the emergence of the dynamical properties.

The set of input and pseudo-input components, denoted Z is recursively defined
as follows:

~-IcI (all input components are in fN),
— Vg; € G, if Reg(g;) C T then g; € T (if all regulators of g; are inputs or
pseudo-inputs, then g; is a pseudo-input).

Similarly, the set of output and pseudo-output components, denoted (5, is defined
as follows:

-0coO (all output components are in (5)7 B N
— Vg; € G, if Vgr. € Gs.t.g; € Reg(gx) we have g, € O, then g; € O (if all
targets of g; are outputs or pseudo-outputs, then g; is a pseudo-output).

Finally, Core, the set of core components of a LSRG is defined as the set of
components that are neither in Z nor in O:

Core =G\ (ZUO)

When input components (elements of Z) are maintained constant, for any at-
tractor made up of a set of states A, we have: Vg; € f, Yo, o' € A v = vl
(pseudo-input components are stable).

Moreover, while input and pseudo-input components transmit external stimuli
to the core components, these drive the dynamics of output and pseudo-output
components. We also refer to the sets O as output cascades, and Z as input
cascades.
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3.2 Reduction of Output Cascades

Since an output has no effect on other components, output components can be
removed from a LSRG, with no impact on the behaviour. This is formalised by
the following property.

Property 1. Let R = (G,K) a LSRG, g, € O an output component of R and

& = (8, T) the associated STG. Then " = (S",T") the STG of the LSRG R”
resulting from the reduction of g,., verifies:

Vu,v €S, (u,v) € T = (" (u), 7" (v)) € T" or 7" (u) = 7" (v), (1)
Ve,y e S", (z,y) € Tm = (s"(x),s"(y)) € T. (2)

Proof. We only prove the first point that corresponds to the preservation of all
the transitions, the proof of Eq.[2lcan be found in [I1], lemma 1. Let us consider
(u,v) € T, then,

— if transition (u,v) involves g, (the reduced component), v and v are in the
same equivalence class [u]w, = [v], (they only differ in their values of g,),
therefore their projection is equal: 7" (u) = 7" (v);

— if transition (u,v) involves g; € Z, an input component, which freely varies,
then, this transition is obviously preserved: (7" (u), 7" (v)) € T;

— if transition (u,v) involves g; € P U O, a proper or an output component
(different from g, ), then v; = K;(u) + A;(u) and, because g, is an output
component, we have also K7 (7" (u)) = K;(u), hence this transition is pre-
served: (7" (u),n"(v)) € T.

As a consequence, attractors are fully preserved in €7, including complex ones,
and more than that, reachability of these attractors is conserved. This follows
from the fact that a path in & is preserved if the reduction preserves all its
transitions (see [I1]). We say that the reduction of an output component is
lossless.

As mentioned before, output components often serve as readouts of a model.
Hence it is important to retrieve their values (typically in a stable state or in
a complex attractor). This is easily done because the behaviour of an output
component is fully described by the sole representative states in the original
STG. Hence retrieving the behaviours of output components only requires to
store their logical functions (see Section [).

Since the reduction of an output component is lossless, it is obviously also the
case for the reduction of several output components.

Following the reduction of an output component, some of its former regulators
become output components. These are the pseudo-outputs (that only regulate
outputs or other pseudo-outputs). As such pseudo-outputs become outputs af-
ter reduction of their targets, they can be reduced as well, still preserving the
dynamical behaviour. Therefore, the reduction of the whole set O of output and
pseudo-output components does not affect the dynamics.

To be able to recover the values of the components in O, we need to keep
trace of the reduction of pseudo-outputs, redefining the logical functions of the
targets of previously reduced components (see Section HI).
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3.3 Input Components

Regulatory functions of proper and output components define their behaviours,
depending on the current state of their regulators. An input component has no
regulator and its function is thus assumed to be either constant or to freely
vary as specified in Definition [Il For a LSRG with constant input values, its
STG is composed by a set of disconnected graphs, one for each combination
of input values (see Figure [l panel B). Given an initial value of all the input
variables, the behaviour is thus restricted to a sub-graph, easing the analysis
of large systems. However, when input components freely vary (i.e., are under
no specific control), the STG encompasses transitions between all the states
that have the same values of the internal components, denoting the sole changes
of the input components. Considering that states are characterised by proper
and output components values, the whole behaviour can be represented by a
STG, with transitions labelled by the values of the input variables, yielding a
compacted, labelled STG (see Figure[Il). Below, we define such a projection over
the input variables.

Definition 3. Given R = (G =ZUPUO,K), a LSRG and € = (S, T) its STG.
The corresponding labelled STG £F = (SIZ, T17) is defined as follows:

z_

- St = Hgiepuo Di,

— T w? e SE, (W L,iw?®) € TV iff v,w € S with (v,w) € T such that
Yg; € PUO, vlz = v; and wlz = w;, with L the label of this transition defined
as the set of all the values of the input components for which this transition
is observed in E:

L={uelljezD; s.t.Vg; € L, v; = ui(= w;)}.

When a LSRG has a significant number of input components, this represen-
tation may presents a true gain in the number of states (II,,cg\z|D;| instead
of ITy,eg|D;), still keeping all the information regarding the input components.
Such a graph structure combining labels on both states and transitions is already
used by the formal verification community, and is called a Kripke Transition Sys-
tem (KTS) [7].

By definition, stable states in a STG have no output transitions (see Figure[I]
panel B). However, when using model checking techniques, states of the system
to be verified must give rise to at least one transition. Notably, a self-loop must
be added to each stable state when translating the system into a KTS (e.g., the
implemented export to NuSMYV). This is particularly useful to represent labelled
STGs (Definiton ().

Definition 4. Given a labelled STG EVF = (SVF,T17), a state v € ST is:

a strong stable state iff Yw € SIZ, VL € I1,,czD;,w # v = (v, L,w) ¢ T'%,
a weak stable state iff VYw e SI%, 3L e HyecrDi,w#v= (v,L,w) & T,
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Fig. 2. (A) Simple example of a (Boolean) LSRG, with two proper components, an
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input and a pseudo-input, and the associated logical functions. Here 7= {g3,92}. (B)
The labelled STG £/193} resulting from the projection over the input component gs
and the labelling of the transitions with its values. The states 000, 110 and 111 are weak
stable states. The last two states constitute a strong stable core ensemble (see text).
(C) The labelled STG of the model where g» has been reduced. Here, the previous
core ensemble {110, 111} can be recovered from the strong stable state 11.

These definitions are sufficient for fixed input components and also cover
all the cases observed in our toy example (Figure [Il panel D), and in the T
cell activation model described in Section Bl They are however not sufficient in
other situations, where signalling cascades do vary upon input variations and
the “core“ network remains stable. This is illustrated in Figure 2l

It is thus necessary to better classify stable patterns, and identify what we
would call stable core patterns (see states 110 and 111 in Figure ). To assess
pattern stability over input component variations, we rely on the behaviour of
the components in Core, the set of components that belong to the core network
(see Section B)).

Let Stable C S be the set of stable states for constant input compo-
nents: Stable = {v € S, K;(v) = v;, Vi € G}. It is worth noting that GINsim
provides a very efficient algorithm to determine this set [0[12]. Then, for all
v € Stable, we define Core(v) = {v' € Stable, Vg; € Core, v, = v;}, the set
of stable states that have the same values for the core components. Then, for
varying inputs, we classify the stable states as follows,

— if |Core(v)] = 1, then v is a weak stable state (there is a unique input
configuration for which this state is stable);

— if Yo' € Core(v), Yg; € P, v; = v}, then v is a strong stable state (since all
these stable states only differ in their input component values);

— otherwise (|Core(v)] > 1 and F' € Core(v), Ig; € P\ Core, v; # v}), v
defines what we could call a stable core ensemble. Then, similarly to the sta-
ble states, we could define strong stable core ensembles (such that |Core(v)]



298 A. Naldi, P.T. Monteiro, and C. Chaouiya

equals the number of configurations of the input values) and weak stable core
ensembles.

Note that if v € Core(v) C Stable, states v and v’ necessarily share the same
values on their output (and pseudo-output) components.

Another method to assess the stability of patterns upon input variations,
would consist in reducing the input cascades (iteratively all the pseudo-input
components in 7 \ Z). Then, the strong stable states and core ensembles of
the original model are recovered from the (strong) stable states of this reduced
model (see Figure 2 panel C). Similarly, weak stable states and core ensembles
are recovered from the weak stable states of the reduced model. However, it is
important to recall here that this reduction, although it conserves the number
of stable states, could modify their reachability. This method is rather similar
to that described by Saadatpour et al. who, for constant input values, consider
the components that will reach stable values and propose to reduce them [I5].

Although such considerations on stability upon input variations could also
apply to complex attractors, we leave this extension for future work.

4 Implementation

The software GINsim is dedicated to the definition and analysis of logical mod-
els [9]. Tt provides, among a variety of functionalities, the reduction method
presented in Section [ [I1]. Here, we briefly describe implementation aspects
of the methodology presented in this paper. First, the reduction of the out-
put cascades is implicitly made in GINsim. The model is then exported to
be verified using the model-checker NuSMV. A new stable release of GINsim
is expected in the near future. Meanwhile, a beta version of the tool with
these new functionalities is available, along with supplementary material, at
http://compbio.igc.gulbenkian.pt/nmd/node/46.

4.1 Output Nodes Manipulation in GINsim

GINsim [9] has been extended to automatically annotate output nodes based
on the structure of the LSRG. We have added an internal method that identi-
fies the pseudo-outputs and turns them into output components. For this, we
apply the reduction method to remove references to pseudo-outputs from the
logical functions of their targets. This trick ensures that all outputs can be de-
fined as depending only on core components, their values can thus be computed
independently. This is supported by the argument below.

Considering g; an output and g; a pseudo-output regulating g; (g; € Reg(g;)).
KC;, the logical function of g;, is not modified, whereas KC;, the logical function
of gi, is replaced by IC{ its new function obtained by the reduction of g;.

Note that, for the time being, the LSRG obtained through this manipulation
is used only for the NuSMV export, where outputs are defined as macros, not
characterising a state.
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4.2 NuSMV Model Encoding and Verification

In [8], we have implemented an export functionality in the context of GINsim,
making possible the use of the NuSMV symbolic model-checker [2]. This NuSMV
model description enabled the consideration of the following updating policies:
synchronous, asynchronous or priority classes. This export also permitted to
distinguish between input and non-input components, enabling the reduction of
the state space over input components (described in section B3)).

Here, this GINsim export functionality is extended with the capability to
distinguish between proper and output components (Section B.2)), containing
only the logical rules governing the proper components. The input valuations
are still projected over the transitions where they are valid, and the output
valuations are computed as macros depending on the state (defined only by the
proper components), permitting a reduction of the state space proportional to
the number of (pseudo-)output components. Pseudo-outputs are tackled through
the previously discussed method: from the NuSMV export point of view, they
are treated just like outputs.

As mentioned earlier, to be able to represent information both on states
(proper components) and on transitions (input components), we consider a graph
structure known in the formal verification community as Kripke Transition Sys-
tem (KTS) [7]. The main version of NuSMV supports the verification of temporal
logic properties over KTSs, but only when these properties do not make a ref-
erence to input components, i.e., do not impose restrictions on the transitions
of the KTS. This version only permit us to verify properties considering varying
inputs, with no query on their values.

In order to perform verifications over KTSs with properties imposing re-
strictions on transitions, we consider a particular NuSMV extension, denoted
NuSMV-ARCTL-TLACE [6]. This extension supports the ARCTL temporal
logic [13], an extension of CTL [3], which adds action-restricted operators
through an additional argument allowing the specification of restrictions on tran-
sitions over KTSs. Through the use of the ARCTL temporal logic, it is then
possible to perform verifications over reduced models of signalling-regulatory
networks, considering restrictions on their input components. These restrictions
thus allow the verification of a property with specific (combinations of) values
of the input components, or a chaining of CTL and ARCTL operators to ver-
ify reachability properties over K'T'S paths with unrestricted and specific input
values, respectively.

A CTL temporal logic operator accepts as argument a set of restrictions over
non-input components, e.g., EF(varl & !var2), exploring each transition inde-
pendently of the value of the input components. On the other hand, an ARCTL
temporal logic operator accepts an additional argument defining a restriction
over input components, e.g., EAF(inp4 & !inp7) (varl & !var2), exploring
only the transitions satisfying inp4 & !'inp7 (without imposing restrictions on
other input components that might exist).
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5 Application to the Model of T Cell Activation

T cells (or T lymphocytes) are immune cells reacting to the presence of specific
antigens in the organism and playing a key role in the selection of the immune
response. The T cell family is divided into several subfamilies, each with a spe-
cific role. Their antigen specificity arises from a randomly-generated membrane
receptor: the T cell receptor (TCR). New T cells are continuously generated,
then undergo a selection mechanism to avoid self-immunity before circulating
in the organism. In the absence of their specific antigen, these cells will enter
apoptosis after a few days. However, when it encounters its specific antigen, a T
cell is activated and elicits the corresponding immune response. This activation
is triggered by binding of the antigen on their T cell Receptor (TCR). Cells are
kept alive as long as they receive TCR stimulation. The TCR activation path-
way is thus a crucial part of the initiation and maintenance of a specific immune
response.

The TCR recognises specific antigens (peptides) associated to the Major His-
tocompatibility Complex (MHC) on the surface of Antigen Presenting Cells. This
recognition also involves TCR co-receptor (CD4 for T helper cells, CD8 for cyto-
toxic T cells) and is accompanied by CD28 co-stimulation. Saez-Rodriguez et al.
[1I'7] proposed a comprehensive logical model of the TCR activation pathway, tak-
ing into account the CD4 co-receptor and the action of the CD28 co-stimulatory
molecule. This TCR activation model encompasses 94 components, including 35
proper components (see Figure [3)).

The dynamical analysis performed in [17] focuses on short-term effects thus
studying the states reached by signal propagation. This is done by impeding the
feedback loops to function through the definition of slow events. Here, we are
interested in the more complex behaviours that arise when feedback loops are
taken into account. Firstly, we have defined a GINsim version of this model and
confirmed that we obtain the same stable states in absence of the feedback loops,
both in the wild-type condition and after applying model perturbations.

For the full model (with feedback loops), we observe that stable states only ex-
ist in the absence of TCR stimulation (with or without CD4 and CD28). Indeed,
the TCR signal triggers oscillations, embodied in complex attractors. Note that
such oscillations will be transient by nature as the TCR signal is not a stable
stimulation. In what follows, we start by identifying the attractors (stable states
in the absence of TCR signal and oscillations when TCR is present) using GIN-
sim capabilities. We then resort to model checking to gain further insights into
long term behaviours upon changes of the input signals; in particular, switches
from one attractor to another.

5.1 Attractor Identification

To study the reachability of attractors by model-checking, we first need to iden-
tify these attractors, which is easy for stable states but more challenging for
complex attractors as shown hereafter.
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Fig. 3. TCR activation model proposed in [I7]. This model encompasses 94 compo-
nents: 3 inputs (blue), 14 fixed components (green for active and grey for inactive),
and 14 outputs (orange), 28 pseudo-outputs (yellow), 35 proper components (white).
Green arrows denote activations, while red T-arrows denote inhibitions.

Using the stable state search tool available in GINsim [I2], we have identified
all the stable states and, using the STG construction, we have checked their
reachability from the initial state defined in [16]. This initial state comprises all
components set to zero, except the three repositories lckr, ccblr, racir and
five fixed components cd45, gadd4b, bcl110, cardll and maltl.

We have then identified the complex attractors by performing simulations
in the presence of the TCR ligand. In this case, the computation of the STG
is not tractable on the full model, even after the reduction of the output cas-
cades. We have thus considered a further reduced model in which 10 internal
components have been manually selected for reduction (aiming for a minimal
impact of this reduction on the dynamical behaviour, we selected: cblb, cblbpi,
cblbp2, sos, 1ckpl, 1ckp2, mek, raf, ras, and X). We recall that this reduction
of core components ensures that no attractor can be lost, but may impede their
reachability. We thus use this technic to identify complex attractors before using
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model-checking on the full model to assess their reachability. Using this simpli-
fied model, we could identify its complex attractors. Starting from states within
these sets of states, we could further refine the descriptions of these attractors
for the full model (without output cascades, though).

Table [l illustrates the identified attractors. We named these attractors SSxxx
or SCCxxx to represent weak stable states or strongly connected components,
respectively. Additionally, we specified the name of each attractor according to
the (set of) input combination(s) for which each attractor is stable, following
the order cd28, cd4 and tcrlig.

The set of states composing each complex attractor is covered by a schema,
or pattern (see Table [I). For each complex attractor, we specify an ARCTL
property and use the NuSMV-ARCTL-TLACE model-checker to verify that,
for each of these patterns, no state covered by the pattern enables a transi-
tion leaving that set of states. The following property exemplifies the case of
the pattern SCC0O01 corresponding to complex attractor that arises in the ab-
sence of both cd28 and cd4 and the presence of tcrlig: INIT SCC001; SPEC
EAF(!cd28 & !cd4 & tcrlig) (1SCC001). All the equivalent properties defined
for each complex attractor (see Supplementary files) returned false, ensuring
that each pattern indeed captures the terminal SCC, containing at most some
states belonging to its (strict) basin of attraction. The patterns describing the
attractors given in Table [I, show that the weak stable state SS0*0, where cd28
is absent, is part of the complex attractor SCC001, which in turn is part of the
complex attractor SCCO11. The analogous occurs when cd28 is present in the
case of the remaining attractors.

In the attractor summary of Table [l considering the wild-type condition, we
can observe that the tcrlig input variable is responsible for the existence (resp.
absence) of oscillations, whenever it is present (resp. absent). This is confirmed
by a circuit analysis, which provides the conditions under which the existing
negative circuits are functional (see [I2/I4/19]). Here, the main functional neg-
ative circuit, zap70 ccbblpl, depends on the presence of tcrp, which in turn
depends on the presence of tcrb, which is directly controlled by the value of the
tcrlig input variable. The other negative circuit, shpl 1lckpl, depends on the
absence of csk, therefore on the presence of tcrb, but also directly depends on
the cd4 input variable.

While the other input components alone are not capable to trigger oscillations,
we can note that in absence of tcrlig, cd4 hasno effect on the stable state identity,
while cd28 changes the activity of some proper and output components. In partic-
ular, cd28 activates pkb, which triggers anti-apoptotic signals. This role of cd28 is
maintained in the presence of tcrlig, while cd4 increases the number of oscillating
components, dramatically increasing the number of states in the attractor.

If we consider more closely the activation pattern of some crucial output com-
ponents, we can observe that ap1l, nfat and nfkb share a pattern: their activation
requires both tcrlig and one of the other inputs (cd4 or ¢d28). This result is con-
sistent with the fact that the TCR activation is crucial for the activity (through
nfat) and survival (through nfkb and pkb in presence of cd28) of T cells.
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Table 1. List of patterns for the wild-type, for the single mutant Afyn and double
mutant Afyn-lckr. Two weak stable states (S80%0 and SS1*0) are shared by all con-
ditions: wild-type, single Afyn mutant and double Afyn-1ckr mutant. Light and dark
grey cells, highlight the values for the proper and output variables, which depend on
cd28 and cd4 input variables, respectively. The tcrlig input variable discriminates
between the weak stable states and the complex attractors. Some proper and output
variables are omitted for sake of space, their values being easily deduced from those
listed in the table.
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We further performed the attractor search for a given set of perturbations and
we observed that some of the complex attractors are replaced by stable states in
the Afyn single mutant, as well as in the Afyn-1ckr double mutant (see Table[]).
In the Afyn single mutant, we observe that most of the proper components that
underwent oscillations in the wild-type condition are now fixed at zero in the stable
states SS001 and SS101, while a small subset of them becomes tightly dependent
on the presence of tcrlig (dgk, 1ckp2 and tcrb). However, the remaining complex
attractors SCCO11 and SCC111 differ from the wild-type condition by having fyn
and ccblp2 not expressed, and 1ckpl, jnk and nfat dependent on the presence
of cd28. The Afyn-1ckr double mutant, additionally prevents the expression of
1ckp2, making the attractors SS001 and SS101 no longer dependent on the absence
of cd4. Tt is worth remembering that Saez-Rodriguez et al. [I7] performed the mu-
tant simulations focusing only on “slow” events, thus breaking the feedback loops,
which allows the activation of pkb. In this paper, considering the full model, we
observe that pkb becomes tightly dependent on the presence of cd28 due to the
influence of cblb upon pi3k.

5.2 Reachability Analysis

After the identification and characterisation of the attractors, we have analysed
their reachability, assessing which input conditions permit to reach (or leave)
each attractor.
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This is done by first encoding the patterns given in Table [l in the NuSMV
model description. The characterisation of the complex attractors considers only
a restriction on the fixed variables (described by the corresponding pattern).
Then, for each of the attractors, we specify a set of ARCTL temporal logic
reachability properties, testing the existence of a path from each stable/complex
attractor to every other attractor, for all the combinations of (varying or fixed)
input components. These combinations of input components are obtained by fix-
ing some of them using ARCTL temporal operators, possibly leaving the others
to freely vary (see Supplementary files).

InitState
cd28=0 l

cd2s=1
—e

i
cd28=0
-

SCCo11 . SCC001

Fig. 4. State space characterization, of the necessary input conditions to switch be-
tween the stable and complex attractors specified in Table[I], with respect to the input
variables valuation. It is worth noting that the SS0*0 stable state is included in the
SCCO01 complex attractor, and this is itself included in the SCCO11 complex attractor.
The transitions between these attractors are then dependent on value restrictions of
the cd4 and tcrlig input variables. The analogy is valid for the SS1*0.

Figure [ presents the verification results, indicating the necessary input con-
ditions to switch between attractors. First, we confirm that the input component
cd28 divides the state space in half, setting the dynamics to focus on one group
of attractors or the other. These are mirroring each other, where each is com-
posed by a stable state and two complex attractors. Like previously mentioned,
the presence of tcrlig controls the exit from a stable state towards its corre-
sponding complex attractor and vice-versa. Finally, within each group of complex
attractors, the presence (resp. absence) of the cd4 input variable allows (resp.
restricts) the dynamics to evolve to a larger (resp. smaller) set of states, SCCO11
or SCC111 (resp SCCO01 or SCC101).

6 Conclusions and Prospects

The analysis of qualitative models of large signalling-regulatory networks is ham-
pered by a combinatorial explosion of their state spaces. This is particularly true
when properties of interest relate to reachability that often requires extensive
search of the state transition graphs. Here, we propose to lessen this problem by
a specific handling of input and output components. For the input components,
their values are taken into account by proper labels on the transitions. This leads
to a significant reduction when the model encompasses a large number of input
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components (as it is the case, for instance, in the model accounting for T cell
differentiation defined in [I0], which includes 13 inputs for a total number of 65
components). Furthermore, we used the reduction method as defined in [I1] to
get rid of output components and of what we called pseudo-output components.
We prove that this reduction is lossless, in the sense that it preserves all the
attractors and their reachability.

We aim at using the methodology presented here to revisit the T cell differen-
tiation model [I0]. In particular, we can now systematically analyse the impacts
of input variations on attractor switches (accounting for a possible plasticity of
the T cells), as well as mutant conditions.

In the near future, we will make the reduction of output cascades fully func-
tional in GINsim. More precisely, upon user request, output cascades will be
reduced and made implicit, STGs will be computed disregarding the correspond-
ing variables, which values will be possibly recovered for given set of states (e.g.,
in attractors).

In Section [3.3], we have discussed the determination of stable patterns, includ-
ing in the case of varying input components. When inputs freely vary, pseudo-
inputs also vary, but these variations may not affect the stability of the core
network. We thus introduced the notions of (strong or weak) stable states and
stable core ensembles. While GINsim implements an efficient algorithm to iden-
tify all stable states (for constant input components), we still need to delineate
a method to determine the complex attractors. Indeed, for large models (as it
is the case for the TCR model revisited in Section [), the full characterisation
of all the complex attractors is often difficult or even intractable. We then could
extend the concepts of strong and weak stability to these complex attractors.
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